1,235 research outputs found

    SNPSTR: a database of compound microsatellite-SNP markers

    Get PDF
    There has been widespread and growing interest in genetic markers suitable for drawing population genetic inferences about past demographic events and to detect the effects of selection. In addition to single nucleotide polymorphisms (SNPs), microsatellites (or short tandem repeats, STRs) have received great attention in the analysis of human population history. In the SNPSTR database () we catalogue a relatively new type of compound genetic marker called SNPSTR which combines a microsatellite marker (STR) with one or more tightly linked SNPs. Here, the SNP(s) and the microsatellite are less than 250 bp apart so each SNPSTR can be considered a small haplotype with no recombination occurring between the two individual markers. Thus, SNPSTRs have the potential to become a very useful tool in the field of population genetics. The SNPSTR database contains all inferable human SNPSTRs as well as those in mouse, rat, dog and chicken, i.e. all model organisms for which extensive SNP datasets are available

    Nanoscale periodicity in stripe-forming systems at high temperature: Au/W(110)

    Full text link
    We observe using low-energy electron microscopy the self-assembly of monolayer-thick stripes of Au on W(110) near the transition temperature between stripes and the non-patterned (homogeneous) phase. We demonstrate that the amplitude of this Au stripe phase decreases with increasing temperature and vanishes at the order-disorder transition (ODT). The wavelength varies much more slowly with temperature and coverage than theories of stress-domain patterns with sharp phase boundaries would predict, and maintains a finite value of about 100 nm at the ODT. We argue that such nanometer-scale stripes should often appear near the ODT.Comment: 5 page

    Atomistic modelling of large-scale metal film growth fronts

    Full text link
    We present simulations of metallization morphologies under ionized sputter deposition conditions, obtained by a new theoretical approach. By means of molecular dynamics simulations using a carefully designed interaction potential, we analyze the surface adsorption, reflection, and etching reactions taking place during Al physical vapor deposition, and calculate their relative probability. These probabilities are then employed in a feature-scale cellular-automaton simulator, which produces calculated film morphologies in excellent agreement with scanning-electron-microscopy data on ionized sputter deposition.Comment: RevTeX 4 pages, 2 figure
    • …
    corecore