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Abstract—Research is emerging on how end users can correct 
mistakes their intelligent agents make, but before users can 
correctly “debug” an intelligent agent, they need some degree of 
understanding of how it works. In this paper we consider ways 
intelligent agents should explain themselves to end users, 
especially focusing on how the soundness and completeness of the 
explanations impacts the fidelity of end users’ mental models. 
Our findings suggest that completeness is more important than 
soundness: increasing completeness via certain information types 
helped participants’ mental models and, surprisingly, their 
perception of the cost/benefit tradeoff of attending to the 
explanations. We also found that oversimplification, as per many 
commercial agents, can be a problem: when soundness was very 
low, participants experienced more mental demand and lost trust 
in the explanations, thereby reducing the likelihood that users 
will pay attention to such explanations at all. 

Keywords—mental models; explanations; end-user debugging; 
recommender systems; intelligent agents  

I. INTRODUCTION  
How should intelligent agents explain themselves to users? 

The predominant approach in commercial agents is to “keep it 
simple” (e.g., the music recommender Pandora.com describes 
its song recommendations via a single sentence). However, 
such simplicity may prevent users from understanding how the 
agent makes decisions, erecting a barrier to users’ potential 
ability to help the agent improve; i.e., it may obstruct their 
ability to effectively debug the agent’s reasoning. 

As with other kinds of end-user debugging, users’ mental 
models of how an agent works help them decide exactly what 
about the agent they need to correct, and how to go about it 
[11]. In this paper we raise the question of whether simplicity 
is always the right attribute to prioritize when designing agent 
explanations. Another possibility is to prioritize explanation 
completeness; prior work has shown that providing end users 
with detailed explanations about an intelligent agent’s 
reasoning can increase their understanding of how the system 
works [11]. However, information comes at the price of 
attention—a user’s time (and interest) is finite, so the solution 
may not simply be “the more information, the better”.  

To investigate how intelligent agents should explain 
themselves to their users, we performed a qualitative study to 
separately consider two dimensions of explanation fidelity: 
soundness (how truthful each element in an explanation is with 
respect to the underlying system) and completeness (the extent 

to which an explanation describes all of the underlying 
system). We then investigated how varying soundness and 
completeness (as in Fig. 1) impacted users’ mental models of a 
music-recommending intelligent agent, what types of 
information were most helpful in the explanations, how 
explanation fidelity impacted users’ perceptions of the costs 
and benefits of attending to these explanations, and users’ trust 
in the explanations’ veracity. Our research questions were:  

RQ-1: How do soundness and completeness impact end 
users’ mental models?  

RQ-2: Which types of information are most helpful for 
users’ mental models?  

RQ-3: What obstacles do end users encounter when 
building mental models of an intelligent agent’s reasoning? 

RQ-4: How do users’ perceived costs and benefits of 
attending to explanations change with explanation fidelity? 

RQ-5: How does user trust change as explanation 
soundness and completeness increase?  

II. BACKGROUND AND RELATED WORK 

A. Functional and Structural Mental Models  
Mental models are internal representations that people build 

based on real world experiences. These models allow people to 
understand, explain, and predict phenomena [9], and to then act 
accordingly. For example, a mental model of a computer could 
be that it displays everything typed on the keyboard and 
remembers these things after the user presses a “save” button. 
This simple model would help a novice predict that turning off 
the computer without pressing “save” will result in lost work. 
Mental models can vary in their fidelity—software developers 
hold higher fidelity models of computers, for example. 

There are two types of mental models: functional models 
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Fig. 1. Our problem space: How sound and complete do explanations 
need to be to help end users build high-fidelity mental models? 

 



 

imply that the end user knows how to use something, but not 
how it works in detail, whereas structural models provide a 
detailed understanding of how and why it works. Norman [14] 
reported many instances of erroneous mental models leading to 
behavior with unexpected consequences, suggesting the 
importance of structural models.  

B. Building Mental Models of Intelligent Agents  
Our prior work investigated the feasibility of end users 

building high-fidelity structural mental models of 
recommender systems [11]; participants grasped many nuances 
of the recommendation algorithm, and as they developed 
higher-fidelity mental models, they better controlled the 
recommender. That study, however, relied on a human 
instructor instead of automated explanations. Tullio et al. 
studied user interactions with an intelligent agent that predicted 
office workers’ availability, finding that even when faced with 
contradictory evidence, users often tried to fit it into their 
existing mental model of the agent [19]; this suggests that it is 
important to help end users develop correct models as quickly 
as possible. Cramer et al. found that providing explanations of 
why an intelligent agent believes two items are similar helped 
participants believe they understood how the agent worked, but 
their actual mental models were not measured [4]. 

Lim and Dey [12] explored intelligibility types—different 
types of information—that intelligent agents can present to end 
users. Their taxonomy includes categories for the inputs used 
by an agent, its reasoning process, and concrete explanations of 
why it made a particular decision, among others. They later 
showed that one of their intelligibility types can help end users 
better understand the output of decision trees [13]. Our work 
uses the Lim/Dey taxonomy of intelligibility types in our 
investigation of explanation fidelity. 

There is an open question of how much information agents 
should present to users—existing research about explanation 
fidelity has focused on the value of low fidelity explanations 
versus no explanations. For example, when Herlocker et al. [8] 
evaluated 21 ways of explaining collaborative filtering 
systems, they investigated only low fidelity explanations 
because they wanted to “avoid creating a new kind of 
information overload by presenting too much or too confusing 
data”. Other researchers have also investigated explanation 
fidelity in recommender systems (Tintarev and Masthoff 
provide a comprehensive overview in [18]), but primarily as it 
relates to trust, acceptance, or satisfaction. 

One hypothesis is that more information in an explanation 
will help users build better mental models. However, very 
complete or complex explanations require more attention to 
process, which disincentivizes users to build accurate mental 
models. Rosson et al., for example, found that the Minimalist 
explanation model [3]—which minimizes passive learning 
tasks, such as reading long explanations, favoring instead short 
explanations coupled with try-it-out exploration—helped 
programmers understand Smalltalk programs up to two orders 
of magnitude faster than traditional instruction techniques [15]. 

On the other hand, the Attention Investment Model predicts 
that people will still use high-cost explanations if they perceive 
the benefits will outweigh the costs (e.g., time) and risks (e.g., 

no reward) of doing so [1]. Thus, rather than simplifying 
explanations to one or two salient points (as contemporary 
agents do), an alternative may be to identify the most helpful 
information for the end user (as in the Minimalist explanation 
model), and then communicate the benefits of paying attention 
to it. One successful way to communicate the benefits of 
invested attention is the Surprise-Explain-Reward method [20], 
which leverages curiosity by surprising users (e.g., showing 
odd values to test spreadsheet formulas), then explains the 
benefits of the behavior it is trying to encourage (e.g., fewer 
formula errors), which is the user’s reward for investing their 
attention. In the case of intelligent agents, benefits may take the 
form of an enhanced ability to control the system [11], or a 
more appropriate level of trust in the system.  

Without clear benefits, however, users may ignore 
explanations altogether. For example, Bunt et al. [2] found that 
when users had no direct control over an agent’s reasoning, 
user interest in any type of explanation was very low. 

III. EXPLANATION SOUNDNESS AND COMPLETENESS  
We tease apart soundness and completeness because agent 

system designers can make choices independently in each as to 
the fidelity of their agents’ explanations. The terms soundness 
and completeness are borrowed from the field of formal logic, 
in which a deductive system is sound if all of the statements it 
can create evaluate to true, and complete if its compositional 
rules allow it to generate every true statement. We apply these 
terms to explanations in an analogous manner: 

Soundness (“nothing but the truth”): the extent to which 
each component of an explanation’s content is truthful in 
describing the underlying system. 

Completeness (“the whole truth”): the extent to which all 
of the underlying system is described by the explanation. 

For example, an agent that explains its reasoning with a 
simpler model than it actually uses (e.g., a set of rules instead 
of additive feature weights) is reducing soundness, whereas an 
agent that explains only some of its reasoning (e.g., only a 
subset of a user neighborhood) is reducing completeness.  

IV. METHODOLOGY 
To investigate our research questions, we presented 17 

participants with up to eight music recommendations made by 
a functional prototype. Each recommendation came with 
various kinds of explanations of the system’s reasons for 
choosing that song, and participants were asked why they 
thought the system made that recommendation. 

A. Prototype Recommender System  
We developed a prototype music recommender to make 

personalized song recommendations for each participant. Our 
prototype used a hybrid recommendation approach, as such 
approaches have been shown to out-perform more traditional 
types of recommenders [17] and provide more “moving parts” 
to explain. Specifically, our prototype employed user-based 
collaborative filtering to find artists, and a content-based 
approach for selecting songs by those artists. 

To train our recommender, we collected the listening habits 
of about 200,000 Last.fm listeners between July 2011 and July 



 

2012 via the Last.fm API1. We identified the 50 most-played 
artists for each of these listeners during this time period, and 
then used the Mahout framework 2  to build a k-nearest-
neighborhood (k=15), where distance between Last.fm users 
was based on overlap in the artists they listened to (calculated 
via the log-likelihood metric [6]). 

Prior to the study, we asked each participant to imagine a 
situation where they would want a playlist of music, and to tell 
us five artists they would like to hear on it. Our prototype took 
these artists and, using the technique described above, 
recommended 20 artists for the given participant (Fig. 2, top). 
To select specific songs, our prototype used a bagged decision 
tree based on Weka’s J48 implementation [7] (the bagging 
ensemble consisted of 100 decision trees). This classifier was 
independently trained for each participant using a set of 
positive training instances (the top 1,500 songs played by 
Last.fm listeners in the participant’s user neighborhood) and a 
set of negative training instances (the top 1,500 songs played 
by Last.fm listeners who did not listen to any artists that 
neighborhood members listened to). This resulted in a classifier 
able to predict whether a given user would or would not like a 
particular song, along with a certainty score (Fig. 2, bottom). 
The song features (a feature is a piece of information a 
classifier can use to discriminate between output classes) came 
from The Echonest’s 3  database, which includes information 
such as tempo, energy, and key.  

To determine which songs to recommend to a participant, 
our prototype collected the 25 most popular songs by each 
recommended artist (a 500 song set). We used these songs’ 
feature vectors as input to our classifier, which predicted 
whether or not the participant would like each song. The 
positive results were sorted by decreasing certainty, with the 
top eight used as song recommendations for the participant. 

B. Treatments and Explanations  
Even though this was a qualitative investigation, we 

explored four treatments, which are shown in Table I: HH 
(high-soundness, high-completeness), MM (medium-
soundness, medium-completeness), HSLC (high-soundness, 
low-completeness), and LSHC (low-soundness, high-
completeness). Fig. 1 visualizes this design space, with HH in 
the top right, HSLC in the bottom right, LSHC in the top left, 
and MM in the middle. We used multiple treatments to gather 
data on a variety of explanation configurations, but restricted 
ourselves to four for feasibility. 

To objectively manipulate completeness, our treatments 
used a varying number of the intelligibility types identified by 
Lim and Dey [12]: inputs (features the system is aware of), 
model (an overview of the agent’s decision making process), 
why (the reasons underlying a specific decision), and certainty 
(the agent’s confidence in each decision). We also increased 
completeness by exposing more information in the why (artist) 
intelligibility type. All treatments included explanations of the 
song selection process (Fig. 3), five members of the user’s 
“neighborhood” of similar Last.fm listeners (Fig. 4), and the 

                                                           
1 http://www.last.fm/api 

2 http://mahout.apache.org 
3 http://developer.echonest.com 

features the recommender could use (Fig. 5). The treatments 
with more completeness (MM, HH, and LSHC) added the 
certainty intelligibility type (Fig. 3, bottom left) and showed 10 
members of the participant’s user neighborhood. The high-
completeness treatments (HH and LSHC) also added a high-
level description of the recommender’s algorithm (the model 
intelligibility type, Fig. 6) and showed all 15 members of the 
participant’s user neighborhood. 

To objectively manipulate soundness, our treatments used a 
range of simplified models of the recommender’s reasons for 
each song selection. The explanation used in the high-
soundness treatments (HH and HSLC) described the bagged 
decision tree (the actual algorithm used to produce the playlist). 
For the medium-soundness treatment (MM), we trained a 
simpler model (a single J48 decision tree) using the bagged 
classifier’s predicted labels for all of the training instances, and 
explained this derived model (a variation of the technique in 
[5]). For the low-soundness treatment (LSHC), we used the 
same approach to train an even simpler model (a one-feature 
decision tree, or decision stump) to explain (Fig. 3, bottom 
right). Because the low-soundness model only explained one 
highly discriminative feature, we considered it a functional 
analog for contemporary agent explanations (e.g., a movie 
recommender that explains its selections by their genres). 

C. Participants and Study Task  
We recruited 17 participants (10 females, 7 males) from the 

local community via flyers and announcements to university 
mailing lists. Participants’ ages ranged from 19 to 34, none had 
a background in computer science, and each was randomly 
assigned to one of the four treatments. 

During the study, participants listened to their 
recommended playlist while a researcher provided participants 
with the paper explanations described in 4.B. After each song, 
a researcher asked the participant why they thought it had been 
recommended. At the end of the study we measured 
participants’ mental models via a combination of short-answer 
and Likert scale questions. Each session was videotaped and 
later transcribed. 

D. Data Analysis  
To qualitatively analyze the data, we developed a code set 

based upon how well participants understood the operation of 
the recommender system, plus additional codes for their 
knowledge gaps, produced using grounded theory methods 
[16]. The resulting code set is presented in Table II. 

 
Fig. 2. Our prototype used a k-nearest neighbor stage to identify similar 
and dissimilar users (top), and a bagged decision tree stage to predict 
which songs the participant would most enjoy (bottom). 
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We transcribed participant utterances during each song and 
applied the codes to these utterances (each code could be 
applied, at most, once per song). Two researchers 
independently coded a small portion of the transcripts and then 

discussed areas of disagreement. Once the researchers agreed 
on the coding of these transcripts, they independently coded 
two complete transcripts (12% of the data)—their agreement, 
as calculated by the Jaccard index (the intersection of all 
applied codes over the union of all applied codes), was 83%. 
Given this acceptable level of agreement, a single researcher 
coded the remaining transcripts and post-study questionnaires. 

Participants’ mental model “scores” were the number of 
correct minus the number of incorrect statements participants 
made during the experiment and on the post-study 
questionnaire, translated to a 0-to-10 (lowest-to-highest) scale. 
Table II shows which types of verbalizations/responses were 
correct vs. incorrect. Participants’ verbalizations during the 
study and post-study questionnaire responses were weighted 
equally. 

V. RESULTS 

A. RQ-1 and RQ-2: Soundness, Completeness, and Types 
As Fig. 7 shows, HH participants achieved three of the top 

four scores. In contrast, all but one of the participants in the 
other treatments clustered around lower scores. This surprised 
us because we had expected the HH treatment to overload 
participants to the point where they would not attend to so 
much complex information. Instead, we expected the MM 
treatment to be a “sweet spot” in the trade-off between 
informativeness and simplicity—but most of the MM 
participants clustered around the lowest scores. 

Further, HH participants’ mental model scores were 
consistently high across features and processes, as Fig. 8’s 
results from the post-task questionnaire show. In fact, HH 
participants were the only ones to correctly describe the song 
selection process (third column of Fig. 8, coded as per Table 
II), and only one HH participant made any incorrect post-task 
observations at all (right half of Fig. 8). (Note from Table II 
that participants in any of the treatments could potentially get 
credit for process descriptions that had correct process 
concepts, e.g., using combinations of features.)  

1) Completeness and Intelligibility Types  

Two of the intelligibility types, why and input, relate to 
features, and participants tended to do better at understanding 
features than process (Fig. 8). However, a closer look at which 

 

 
 

 

 

  

 

Fig. 3. Excerpts from the Why this Song explanation (why intelligibility type). 
(Top left): The high-soundness sheet showed a random sample of decision 
trees from the bagging ensemble.  
(Top right): Each tree was represented as a set of ordered features with allowed 
ranges of values. The medium soundness sheet was similar, but only showed 
one derived decision tree that approximated the bagging ensemble’s reasoning.  
(Bottom right): The low soundness sheet was also similar, but only showed 
one derived decision stump (single-featured tree).  
(Bottom left): For the HH, LSHC, and MM treatments, this sheet also included 
the certainty intelligibility type. 

 
Fig. 4. Excerpt from Why this Artist (why intelligibility type), which showed 
the artists selected by their user neighborhood. All participants received this 
explanation, but with different neighborhood sizes (see Table I). 

 
Fig. 5. Excerpt from What the Computer Knows (input intelligibility type), 
which showed a comprehensive list of features that the recommender used. All 
participants received this explanation. 

 
Fig. 6. Excerpt from How it All Works Together (model intelligibility type), 
which showed how the participants’ artists list was used to make song 
recommendations. (Positive and negative training sets were color-coded 
throughout the flow-chart.) Only HH and LSHC participants received this 
explanation. 
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TABLE I.    THE “WHY (SONG)” INTELLIGIBILITY TYPE WAS AVAILABLE IN 
ALL TREATMENTS, BUT ITS SOUNDNESS VARIED. THE OTHER 

INTELLIGIBILITY TYPES WERE USED TO VARY COMPLETENESS. 
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participants did better suggests that their understanding of 
features aligned with completeness. For example, participants 
in the high-completeness groups (HH and LSHC) averaged 5.5 
valid feature codes per participant, versus the other treatments’ 
average of 4.3. The invalid features added more evidence 
consistent with this, with high-completeness participants 
averaging 4.6 invalid features versus other participants’ 6.3 
invalid features. 

Completeness may also have helped participants 
understand the recommendation process. As Fig. 9 shows, 
participants’ understanding (as per Table II codes) of the artist 
recommendation process (explained through the model and 
why-artist intelligibility types) tended to increase with the 
completeness of their treatment. In particular, the model 
explanation was referenced by half of the participants who 
correctly discussed the artist recommendation process (Fig. 
10). Completeness showed no evidence of impacting 
participant understanding of the song recommendation process; 
however, this was primarily explained via the Why this Song 
explanation, and this explanation did not vary in the 
completeness dimension across treatments.  

Recall that we also increased completeness by adding the 
certainty intelligibility type, but this type did not seem to 
interest participants: only two participants mentioned certainty 
at all, and each did so only once. Although research has shown 
that certainty is a useful intelligibility type to users assessing an 
intelligent agent’s reliability [10], other researchers have found 
that certainty does not help users’ perceived understanding of 
how a recommender operates [4]. Our work suggests that this 
finding extends to actual understanding.  

These results suggest that increasing completeness was 
beneficial to participants’ mental models, and that some 
effective ways to increase completeness included the model 
intelligibility type and the completeness of the why type. 
However, we found no evidence that increasing completeness 
via certainty improved participants’ mental models.  

2) Soundness and Intelligibility Types 

Although HH participants’ performance may at first glance 
suggest that high soundness was also helpful, looking at 
soundness in isolation suggests a different story. High-
soundness participants (HH and HSLC) showed almost no 
differences from the other participants in their mentions of 
valid vs. invalid features or processes. Instead, the clearest 
pattern was one of decreased understanding of the artist 
recommendation process as soundness increased (Fig. 9). 

One hypothesis is that HH and HSLC participants spent 
most of their attention on their complex Why this Song 
explanations, causing them to ignore other explanations. 
Indeed, participants in these high soundness treatments viewed 
the How it All Works explanation only about half as often as 
participants in the low-soundness treatment (mean 0.8 vs. 1.4 
views per person). Instead, they focused on their complex Why 
this Song explanations: they viewed these during more songs 
than participants in the low-soundness treatment (mean of 7.6 
vs. 6.3 songs) and often even reviewed prior Why this Song 
explanations (during an average of 1.9 songs vs. 0.7). P9-HH 

TABLE II.    CODE SET USED TO ASSESS PARTICIPANTS’ MENTAL MODELS. 

Category Code Participant discussed/said… 
Correct:  

the participant 
correctly 

discussed an 
aspect of the 
recommender 

Valid artist 
process 

the artist was chosen via 
collaborative filtering 

Valid song 
feature 

specific song features used by 
the recommender 

Valid song 
process 

a combination of features 
were responsible for the 
recommendation 

Incorrect:  
the participant 

incorrectly 
discussed an 
aspect of the 
recommender 

Invalid feature specific features not used by 
the recommender 

Invalid 
process 

the computer’s reasoning 
involved a single path through 
a decision tree or another 
incorrect description of the 
artist/song selection process. 

Knowledge 
gaps:  

the participant 
expressed 
uncertainty 
about their 
knowledge  

of the 
recommender 

Don’t know not knowing how the 
recommender works 

Uncertain uncertainty regarding their 
answer of how the 
recommender works 

More 
explanation 

details 

needing more details about 
the explanations 

More 
recommender 

details 

needing more details about 
the recommender 

 

 
Fig. 7. Participants’ mental model fidelity scores. Each mark is one 
participant’s score. (Note: MM had one more participant than the others.) 
The highest scores were mostly those of HH participants.  

 
Fig. 8. Post-task questionnaire results. Each mark is one participant, 
represented as in Fig. 7. Only HH participants described all the valid 
aspects of the recommender (left), and only one made an invalid 
description (right).  

 
Fig. 9. Each dot is the percentage of participants who correctly 
understood the artist recommendation process (as per Table II’s codes). 
More participants understood it as completeness (black) increased, but 
fewer participants understood it as soundness (light) increased. 
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explained why she kept reviewing prior explanations: 

P9-HH: “The [high-soundness Why this Song] sheet is a 
little bit hard to look at [flips through prior Why this Song 
sheets], but I’m just looking for things that I’m seeing, from 
one song to the next, that are similar, and that it says it’s 
using for matching and making the predictions.” 

Further, the high-soundness explanations were associated 
with over twice as many Information Gap codes, which 
indicate that as participants viewed these explanations, they 
had additional questions and expressed more uncertainty as 
they described why they thought each song had been 
recommended (mean 7.0 codes per participant) than other 
treatments (mean 3.3 codes per participant). 

Thus, increasing soundness may risk over-complexity, but 
increasing completeness alongside soundness may mitigate this 
effect. While HH participants (those with high soundness and 
high completeness) ended our study with the best mental 
models, the HSLC (high-soundness and low-completeness) 
participants’ models were among the worst (Fig. 7). 

B. RQ-3: Barriers to High-Fidelity Mental Models  
No participant’s understanding of the recommender was 

perfect: the highest mental model score was 8.4 out of 10 
(recall Fig. 7). We found evidence of two barriers to building 
high-fidelity mental models; these barriers were shared among 
all participants, regardless of treatment.  

First was participants’ incorrect assumptions about the 
explanations’ completeness. Every participant, at some point 
during their task, incorrectly assumed that the recommender 
used information that it did not have access to (e.g., the tone of 
the singer’s voice)—even though the input explanation (What 

the Computer Knows) was complete across all treatments. For 
example, participant P6-HSLC had read the What the 
Computer Knows explanation multiple times before asking: 

P6-HSLC: “So I guess, does a computer have access to 
lyrics for a song, does it take that into consideration?” 

[Facilitator refuses to answer, and participant re-reads 
the What the Computer Knows sheet yet again.] 

P6-HSLC: “Oh right, so probably not then.” 

The counts from the post-session questionnaire results were 
consistent with this phenomenon. In responding to a question 
asking if the explanations included every important detail 
about why a song was recommended, the average response was 
only 13.0 (21 indicating “always”, 0 indicating “never”). HH 
participants, however, responded more positively (mean of 
18.0), suggesting that high soundness and high completeness 
together can help convince users that the explanations do 
discuss everything relevant to the agent’s reasoning. 

The second barrier was lack of knowledge of the process of 
how recommendations were made. Participants rarely 
discussed process, focusing much more heavily on features, as 
Fig. 10 illustrates. Some participants even described a single 
feature as the sole reason for a recommendation: 

P2-HH: “Yeah, see, it’s all the way at the bottom of the 
loudness [feature]. So… that’s why [it was recommended].” 

Features may have been easier for participants to 
understand because they were explained concretely (i.e., in the 
context of specific examples). Fig. 11 shows that participants 
used the concrete Why this Song and Why this Artist 
explanations much more than the abstract (i.e., no specific 
examples) How it All Works and What the Computer Knows 
explanations.  

Note, however, that although our abstract How it All 
Works explanation was infrequently used, when participants 
did use it, a larger percentage (50%) correctly discussed the 
recommendation process than with any other explanation (Fig. 
10). Similarly, participants who used the abstract What the 
Computer Knows explanation discussed more valid features 
than invalid features. Perhaps abstract explanations may be 
best made available on demand via a layering approach, in 
which users can “drill up” from a concrete explanation to view 
more abstract details. 

Alternatively, participants may have paid the most attention 
to the Why this Song explanations because it was the only 
explanation that changed during the experiment. The other 
explanation types were presented at the beginning of the study 
and may have attracted less participant attention because they 
were never updated. Dynamically updating explanations may 
be one presentation option to draw a user’s attention to the full 
range of explanations in a highly complete system, but this is 
an open question that requires further investigation. 

C. RQ-4: Is It Worth It?  
The Attention Investment Model [1] predicts that users will 

use high-cost explanations only if they think the benefits will 
outweigh the costs. Thus, we investigated participants’ 
perceived benefits (given the perceived costs) using the 

 
Fig. 10. Participants giving correct (smiles) and incorrect (frowns) 
descriptions upon referencing an explanation. Each face = 2 participants.  
(Light): song features. (Gray): artist recommendation process. (Black): 
song recommendation process. Both why explanations were popular, but 
What the Computer Knows produced fewer invalid features, and How it 
All Works had the highest percentage of participants correctly describing 
the process. 

 
Fig. 11. Number of times participants referenced each explanation: each 
music note = 10 references. Participants referenced the Why this Song 
explanation during almost every recommended song. 



 

questions “If the recommendations improve, do you think it is 
worth the time and effort you spent during this study to give 
feedback to the recommender?” and “Would you take a similar 
amount of time as this study to learn similar things about other 
recommenders you use?” (Each study session lasted less than 
two hours.) We used the summation of these questions to 
estimate perceived benefits, and the summation of the NASA-
TLX questions about mental demand, effort expended, and 
frustration/annoyance to estimate costs (each question had a 
21-point scale).  

As Fig. 12 shows, the LSHC participants were surprisingly 
positive about the benefits vs. costs of referring to the 
explanations—more than three times as positive as participants 
viewing less complete but more sound explanations (MM and 
HSLC). We had expected the MM treatment to best balance 
costs vs. benefits—these participants received explanations that 
seemed likely to be the easiest to understand at a reasonable 
cost. However, our results showed that instead, high 
completeness seemed to be important to our participants. To 
summarize Fig. 12, participants in the two high-completeness 
treatments perceived working with the explanations to be a 
better cost/benefit proposition than the other treatments’ 
participants did. In contrast, soundness did not seem to be an 
asset to participants’ perception of cost-benefit. This may come 
back to the lower understanding associated with higher 
soundness (recall Fig. 9). P6-HSLC reinforced this point, 
remarking that the high-soundness explanations could have 
been useful, but she was unable to make much sense of them 
during the study: 

P6-HSLC: Probably should have looked at [the Why this 
Song sheet] more. 

Facilitator: Do you think this could have been useful? 
P6-HSLC: Yeah… I guess I’m still trying to grasp and 

understand this whole thing here (points at Why this Song 
sheet). 

D. RQ-5: In Explanations We Trust?  
To some low-soundness participants, the decision stump in 

their explanations seemed clearly wrong. For example: 

P13-LSHC: “It says loudness again, I’m really not 
understanding why it keeps going back to that and not using 
energy, or like, anything else.” 

To understand participants’ perceptions of whether the 
explanations they viewed were sound and complete, we asked 
them “Do you think the explanations are accurate about why 
the recommender chose each song?” (perceived soundness), 
and “Do you think the explanations are including all of the 
important information about why the recommender chose each 
song?” (perceived completeness). We asked about soundness 
and completeness separately to determine whether participants 
could discern whether explanations were sound, complete, or 
both. For example, we hypothesized LSHC participants would 
rate their explanations as more complete than sound, while 
HSLC participants would consider their explanations more 
sound than complete. However, our results suggest that 
participants did not differentiate explanations in this way: the 
average difference between the two scores was only 1.5 on a 
21-point scale, and both LSHC and HSLC participants rated 
their explanations as slightly more sound than complete. 

Because the perceived soundness and completeness scores 
together form a holistic assessment of trust, we summed them 
to yield a single trust score. The results, plotted for each 
participant, are shown in Fig. 13. The LSHC participants had 
the three lowest trust ratings, while most HH participants 
accurately gauged their explanations to be the most sound and 
most complete. This suggests there is some danger to 
simplifying explanations by reducing soundness—users may 
perceive that such explanations do not accurately represent the 
system’s reasoning, and so may distrust (and disregard) them. 

VI. DISCUSSION  
Our results suggest that the most sound and most complete 

explanations (HH) were the most successful at helping 
participants understand how the agent worked, and did so with 
a surprisingly good cost/benefit ratio. Further, HH participants 
trusted their explanations more than participants in other 
treatments, particularly LSHC. Indeed, the main problem we 
identified with HH was that participants were at risk of 
focusing on a single complex explanation to the exclusion of 
other information. 

The story was different when only soundness or 
completeness was at our highest level. High completeness 
alone (LSHC) provided participants with the best perceived 
cost/benefit ratio of attending to the explanations, the second-
highest average mental model score, and the best 
understanding of the artist recommendation process. However, 
these participants placed the least trust in the explanations. 
High soundness alone (HSLC) did result in more trust, but was 
also associated with higher perceived costs, lower perceived 
benefits, and flawed mental models. 

Overall, we found that presenting explanations in a sound 
and complete manner is a surprisingly good design choice, 
even for relatively low-benefit agents such as media/product 
recommendation, when they go wrong. (Indeed, we saw a 
slightly negative relationship between mental model score and 
user satisfaction with the recommendations, suggesting that the 
hope of improving even such low-benefit agents may be 

 
Fig. 12. Perceived benefit vs, cost scores (benefit score – cost score), 
averaged by treatment. The high-completeness participants (top two 
rows) perceived relatively high benefits vs. costs of the explanations. 

 
Fig. 13. Trust scores for each participant. The LSHC treatment’s scores 
were relatively low: these participants accurately rated their explanations 
as unsound, but also inaccurately rated them as incomplete. 
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sufficient motivation for users to learn more about the agent.) 
However, if a designer’s user testing of an agent system reveals 
that its target audience believes such explanations are not 
worth attending to, our findings suggest that reducing 
soundness while preserving completeness will improve the 
cost/benefit ratio of attending to explanations. Fig. 14 
summarizes what tool designers may expect to see when 
presenting end users (like our participants) with explanations 
that are very sound, very complete, or both. 

VII. CONCLUSION  
Part of enabling end users to “debug” their intelligent 

agents is explaining these agents to users well enough for them 
to build useful mental models. In this paper we considered two 
dimensions of explanations—soundness and completeness—
and explored how each impacts end users’ mental model 
fidelity, their perceptions of the cost/benefit trade-off of 
attending to these explanations, and their trust in the 
explanations. Among our findings were: 

RQ-1 (Soundness and Completeness): Our most complete 
explanations (HH and LSHC) were associated with the best 
mental models; reduced completeness was the shared feature of 
the two worst-performing treatments (HSLC and MM). 

RQ-2 and RQ-3 (Explanations and Obstacles): Participants 
had more difficulty understanding the agent’s reasoning 
process than the features it used, but abstract explanations of 
the model intelligibility type helped overcome this obstacle. 
However, participants appeared to prefer more concrete 
explanations (recall Fig. 11). 

RQ-4 (Costs and Benefits): Our most complete 
explanations were associated with the highest perceived 
benefits and lowest perceived costs of learning about the 
system; completeness even helped moderate the cost of very 
sound explanations (as in HH). 

RQ-5 (Trust): Participants correctly perceived that the 
LSHC explanations were unsound, but also refused to trust that 
these explanations were complete. Participants placed the most 
trust in HH explanations. 

These findings suggest that many popular intelligent agents 
offer explanations that are too low in fidelity to enable users to 
understand how they work, and show how different 
intelligibility types (e.g., why, model, etc.) can increase 

explanation fidelity, and with it user’s mental models. Further, 
our cost/benefit results show that users want to learn more 
about these systems if their effort is rewarded with the ability 
to improve their intelligent agents. Thus, increasing 
explanation fidelity can be a win/win for end users—motivated 
users can learn how their agents operate, and then employ that 
knowledge to personalize their agents’ reasoning. 
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Fig. 14. The benefits (bold) and costs (italics) of our highest completeness 
and highest soundness treatments. All of the benefits required high 
completeness (left and middle), but many of the costs were only observed 
when soundness was high but completeness was low (right). 
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