11 research outputs found

    How Certain are We of the Uncertainties in Recent Ozone Profile Trend Assessments of Merged Limbo Ccultation Records? Challenges and Possible Ways Forward

    Get PDF
    Most recent assessments of long-term changes in the vertical distribution of ozone (by e.g. WMO and SI2N) rely on data sets that integrate observations by multiple instruments. Several merged satellite ozone profile records have been developed over the past few years; each considers a particular set of instruments and adopts a particular merging strategy. Their intercomparison by Tummon et al. revealed that the current merging schemes are not sufficiently refined to correct for all major differences between the limb/occultation records. This shortcoming introduces uncertainties that need to be known to obtain a sound interpretation of the different satellite-based trend studies. In practice however, producing realistic uncertainty estimates is an intricate task which depends on a sufficiently detailed understanding of the characteristics of each contributing data record and on the subsequent interplay and propagation of these through the merging scheme. Our presentation discusses these challenges in the context of limb/occultation ozone profile records, but they are equally relevant for other instruments and atmospheric measurements. We start by showing how the NDACC and GAW-affiliated ground-based networks of ozonesonde and lidar instruments allowed us to characterize fourteen limb/occultation ozone profile records, together providing a global view over the last three decades. Our prime focus will be on techniques to estimate long-term drift since our results suggest this is the main driver of the major trend differences between the merged data sets. The single-instrument drift estimates are then used for a tentative estimate of the systematic uncertainty in the profile trends from merged data records. We conclude by reflecting on possible further steps needed to improve the merging algorithms and to obtain a better characterization of the uncertainties involved

    Detecting volcanic sulfur dioxide plumes in the Northern Hemisphere using the Brewer spectrophotometers, other networks, and satellite observations

    Get PDF
    This study examines the adequacy of the existing Brewer network to supplement other networks from the ground and space to detect SO2 plumes of volcanic origin. It was found that large volcanic eruptions of the last decade in the Northern Hemisphere have a positive columnar SO2 signal seen by the Brewer instruments located under the plume. It is shown that a few days after the eruption the Brewer instrument is capable of detecting significant columnar SO2 increases, exceeding on average 2DU relative to an unperturbed pre-volcanic 10-day baseline, with a mean close to 0 and D 0:46, as calculated from the 32 Brewer stations under study. Intercomparisons with independent measurements from the ground and space as well as theoretical calculations corroborate the capability of the Brewer network to detect volcanic plumes. For instance, the comparison with OMI (Ozone Monitoring Instrument) and GOME-2 (Global Ozone Monitoring Experiment-2) SO2 space-borne retrievals shows statistically significant agreement between the Brewer network data and the collocated satellite overpasses in the case of the Kasatochi eruption. Unfortunately, due to sparsity of satellite data, the significant positive departures seen in the Brewer and other ground networks following the Eyjafjallajökull, Bárðarbunga and Nabro eruptions could not be statistically confirmed by the data from satellite overpasses. A model exercise from the MACC (Monitoring Atmospheric Composition and Climate) project shows that the large increases in SO2 over Europe following the Bárðarbunga eruption in Iceland were not caused by local pollution sources or ship emissions but were clearly linked to the volcanic eruption. Sulfur dioxide positive departures in Europe following Bárðarbunga could be traced by other networks from the free troposphere down to the surface (Air- Base (European air quality database) and EARLINET (European Aerosol Research Lidar Network)). We propose that by combining Brewer data with that from other networks and satellites, a useful tool aided by trajectory analyses and modelling could be created which can also be used to forecast high SO2 values both at ground level and in air flight corridors following future eruptions

    Coordinated ground-based validation of ENVISAT atmospheric chemistry with NDSC network data : Commissioning phase report

    No full text
    International audienceIn the framework of the coordinated project called CINAMON, a list of ground-based stations associated with the Network for the Detection of Stratospheric Change (NDSC) contribute to the quasi-global validation of ENVISAT atmospheric chemistry data. This paper reports on such activities performed during the Commissioning Phase (CP) of the satellite. After a description of the correlative database generated during this period, preliminary ground-based studies relying on this database give a first picture of the quality of SCIAMACHY ozone and nitrogen dioxide columns, and GOMOS and MIPAS ozone profiles. Illustration of the global mapping of MIPAS ozone profile data is also presented. The paper concludes with perspectives for the Main Validation Phase of ENVISAT

    Atmospheric comparison of electrochemical cell ozonesondes from different manufacturers, and with different cathode solution strenghts: The Balloon Experiment on Standards for Ozonesondes

    No full text
    A balloon flight to compare 18 ozonesondes with an ozone photometer and with ozone column measurements from Dobson and Brewer spectrophotometers was completed in April 2004. The core experiment consisted of 12 electrochemical concentration cell ozonesondes, 6 from Science Pump Corporation (SP) and 6 from ENSCI Corporation (ES), prepared with cathode solution concentrations of 0.5% KI (half buffer) and 1.0% KI (full buffer). Auxiliary ozonesondes consisted of two electrochemical concentration cell sondes with 2.0% KI (no buffer), two reconditioned sondes, and two Japanese-KC96 sondes. Precision of each group of similarly prepared ozonesondes was <2-3%. The six ozonesondes prepared according to the manufacturer's recommendations (SP, 1.0% KI, ES 0.5% KI) overestimated the photometer measurements by 5-10% in the stratosphere, but provided ozone columns in good agreement with the ground-based spectrophotometer measurements. This is consistent with the difference (similar to 5%) in ozone photometer and column measurements observed during the experiment. Using cathode cell concentrations of 1.0% KI for ES sondes caused overestimates of the photometer by 10-15% and of ozone column by 5-10%. In contrast, 0.5% KI in SP sondes led to good agreement with the photometer, but underestimates of ozone column. The KC96 sondes underestimated the photometer measurements by about 5-15% at air pressures above 30 hPa. Agreement was within 5% at lower pressures. Diluting the solution concentration and the buffers from 1.0% to 0.5% KI causes an approximately linear pressure-dependent decrease in ozone for both SP and ES sondes, ratio (0.5 KI/1.0 KI) = 0.9 + 0.024* log(10)(Pressure)

    Coordinated ground-based validation of ENVISAT atmospheric chemistry with NDSC network data : Commissioning phase report

    No full text
    International audienceIn the framework of the coordinated project called CINAMON, a list of ground-based stations associated with the Network for the Detection of Stratospheric Change (NDSC) contribute to the quasi-global validation of ENVISAT atmospheric chemistry data. This paper reports on such activities performed during the Commissioning Phase (CP) of the satellite. After a description of the correlative database generated during this period, preliminary ground-based studies relying on this database give a first picture of the quality of SCIAMACHY ozone and nitrogen dioxide columns, and GOMOS and MIPAS ozone profiles. Illustration of the global mapping of MIPAS ozone profile data is also presented. The paper concludes with perspectives for the Main Validation Phase of ENVISAT

    Validation of 10-year SAO OMI Ozone Profile (PROFOZ) Product Using Ozonesonde Observations

    No full text
    corecore