12 research outputs found

    Global patterns of vascular plant alpha diversity

    Get PDF
    Global patterns of regional (gamma) plant diversity are relatively well known, but whether these patterns hold for local communities, and the dependence on spatial grain, remain controversial. Using data on 170,272 georeferenced local plant assemblages, we created global maps of alpha diversity (local species richness) for vascular plants at three different spatial grains, for forests and non-forests. We show that alpha diversity is consistently high across grains in some regions (for example, Andean-Amazonian foothills), but regional 'scaling anomalies' (deviations from the positive correlation) exist elsewhere, particularly in Eurasian temperate forests with disproportionally higher fine-grained richness and many African tropical forests with disproportionally higher coarse-grained richness. The influence of different climatic, topographic and biogeographical variables on alpha diversity also varies across grains. Our multi-grain maps return a nuanced understanding of vascular plant biodiversity patterns that complements classic maps of biodiversity hotspots and will improve predictions of global change effects on biodiversity

    Vegetation of the eastern communal conservancies in Namibia: I. Phytosociological descriptions

    No full text
    The establishment of communal conservancies aims to have the local communities share in the benefits especially of wildlife resources, in this way spearheading the conservation of the environment. The Desert Margins Programme in Namibia aimed to develop vegetation resource data for the Otjituuo, Okamatapati, Ozonahi, African Wild Dog, Otjinene, Epukiro, Otjombinde, Omuramba Ua Mbinda, Eiseb and Ondjou communal conservancies, in order to assist with natural resource planning. For this purpose, a phytosociological survey of this area, with 422 relevés, was conducted during 2004. The data was captured in Turboveg and forms part of the Namibian phytosociological database (GIVD AF-NA-001). The data was split into two, representing two major land forms, the ‘hardeveld’ and the ‘sandveld’, respectively. A classification was undertaken using the Modified two-way indicator species analysis (TWINSPAN) procedure. Further refinements, based on field observations and literature sources, were performed using Cocktail procedures. Thirteen vegetation associations were formally described in this article, of which two were subdivided into subassociations. These associations can broadly be grouped into broad-leaved savanna types typical of the central and northern Kalahari of Namibia and microphyll savannas found on the transitions to the Central Plateau. One association, the Burkeo africanae–Pterocarpetum angolensis, forms the southern fringe of the Zambesian Baikiaea Woodlands ecoregion of the World Wildlife Fund, whilst all the other associations fall within the Kalahari Acacia–BaikiaeaWoodlands ecoregion. The Combreto collini–Terminalietum sericeae is the most widespread association and dominates the landscape. Threats to the vegetation include overutilisation and regular fires, both of which could easily lead to desertification. This threat is aggravated by global climate change. Conservation implications: This article described 13 plant associations of the central Kalahari in eastern Namibia, an area hitherto virtually unknown to science. The information presented in this article forms a baseline description, which can be used for future monitoring of the vegetation under communal land use

    Phytosociology of the farm Haribes in the Nama-Karoo biome of southern Namibia

    No full text
    Limited historic vegetation data (prior to the 1980s) are available for Namibia. Finding such historic data at Haribes prompted a follow-up survey of the vegetation. We present a classification of the recent data in this paper as a first step towards comparing the two data sets. Six new associations (three with two subassociations each) are formally described. The landscape at Haribes is dominated by a pan with surrounding hummock dunes. The pan supports the Lycio cinereum – Salsoletum, whilst on the hummock dunes the Salsolo – Tetragonietum schenckii can be found. The surrounding plains and escarpment can be divided into three landforms: the torras with the Monsonio umbellatae – Boscietum foetidae, the ranteveld with the Acacio senegal – Catophractetum alexandri (and two subassociations) and calcrete ridges with the Zygophylo pubescentis – Leucosphaeretum bainesii. Dry river beds on the farm support two subassociations of Anthephoro pubescentis – Ziziphodetum mucronatae. The area covered by each dominant landform has been calculated after being mapped. The composition and diversity of the associations are briefly compared to other known vegetation descriptions within the Nama-Karoo. Since November 2011, Haribes has been used as a resettlement farm. This may result in the overutilisation of the limited grazing resources, to the extent that the present, fairly dense Acacio senegal – Catophractetum alexandri of the ranteveld is feared to become degraded to resemble the Monsonio umbellatae – Boscietum foetidae of the torras. Conservation implications: This paper describes six plant associations of the Nama-Karoo biome in arid southern Namibia. The information presented forms a baseline description, which can be used for future monitoring of the vegetation under altered land use

    Vegetation of the eastern communal conservancies in Namibia: II. Environmental drivers

    No full text
    The eastern communal conservancies are situated along the western fringe of the Kalahari basin. Under a very short rainfall gradient, the vegetation abruptly changes from microphyllous Acacia-dominated savannas to mesophyll savannas, dominated by Terminalia sericea and Combretum spp. We hypothesise that this is caused by changes in soil moisture availability brought about by changes in soil texture from loamy soils to deep sands (the ‘inverse texture effect’). For this analysis, we used vegetation and soils data derived from a recognisance survey of the natural resources of the study area. As the sites in the soil and vegetation surveys did not overlap, it was decided to use only synoptic data for the plant associations in the analysis. Non-metric multidimesional scaling ordination was utilised as ordination technique of the vegetation data and various environmental parameters, including soil texture, soil hydraulic parameters, climatic and fire regime parameters, were overlaid as biplots onto the resulting graph, as were various plant functional attributes particularly related to climatic conditions. The main environmental gradient identified within the study area is the rainfall gradient. This relatively short gradient, however, does not explain the marked change in vegetation observed within the study area. This change is attributed to the change in soil type, in particular, the soil texture and the associated soil hydraulic parameters of the soil. This gradient is closely correlated to leaf size, explaining the change from microphyll savannas to mesophyll savannas along the change from loamy to sandy soils. One of the lesser understood mechanisms for the survival of these mesophyll plants on sandy soils seems to be a deep root system, which is actively involved in water redistribution within the soil profile – by hydraulic lift, inverse hydraulic lift and stem flow. Conservation implications: Understanding these mechanisms will greatly assist in understanding savanna dynamics. With the threat of global climate change, we postulate that the vegetation will gradually change from the present mesophyll to a microphyll savanna, but that the grass sward will probably not develop very well. Shrub and tree removal (‘bush harvesting’) is likely to speed up the desertification process within this area

    Linking Land Surface Phenology and Vegetation-Plot Databases to Model Terrestrial Plant α-Diversity of the Okavango Basin

    No full text
    In many parts of Africa, spatially-explicit information on plant α-diversity, i.e., the number of species in a given area, is missing as baseline information for spatial planning. We present an approach on how to combine vegetation-plot databases and remotely-sensed land surface phenology (LSP) metrics to predict plant α-diversity on a regional scale. We gathered data on plant α-diversity, measured as species density, from 999 vegetation plots sized 20 m × 50 m covering all major vegetation units of the Okavango basin in the countries of Angola, Namibia and Botswana. As predictor variables, we used MODIS LSP metrics averaged over 12 years (250-m spatial resolution) and three topographic attributes calculated from the SRTM digital elevation model. Furthermore, we tested whether additional climatic data could improve predictions. We tested three predictor subsets: (1) remote sensing variables; (2) climatic variables; and (3) all variables combined. We used two statistical modeling approaches, random forests and boosted regression trees, to predict vascular plant α-diversity. The resulting maps showed that the Miombo woodlands of the Angolan Central Plateau featured the highest diversity, and the lowest values were predicted for the thornbush savanna in the Okavango Delta area. Models built on the entire dataset exhibited the best performance followed by climate-only models and remote sensing-only models. However, models including climate data showed artifacts. In spite of lower model performance, models based only on LSP metrics produced the most realistic maps. Furthermore, they revealed local differences in plant diversity of the landscape mosaic that were blurred by homogenous belts as predicted by climate-based models. This study pinpoints the high potential of LSP metrics used in conjunction with biodiversity data derived from vegetation-plot databases to produce spatial information on a regional scale that is urgently needed for basic natural resource management applications

    Article On the Suitability of MODIS Time Series Metrics to Map Vegetation Types in Dry Savanna Ecosystems: A Case Study in the Kalahari of NE Namibia

    Get PDF
    Abstract: The characterization and evaluation of the recent status of biodiversity in Southern Africa’s Savannas is a major prerequisite for suitable and sustainable land management and conservation purposes. This paper presents an integrated concept for vegetation type mapping in a dry savanna ecosystem based on local scale in-situ botanical survey data with high resolution (Landsat) and coarse resolution (MODIS) satellite time series. In this context, a semi-automated training database generation procedure using object-oriented image segmentation techniques is introduced. A tree-based Random Forest classifier was used for mapping vegetation type associations in the Kalahari of NE Namibia based on inter-annual intensity- and phenology-related time series metrics. The utilization of long-term inter-annual temporal metrics delivered the best classification accuracies (Kappa = 0.93) compared with classifications based on seasonal feature sets. The relationship between annual classification accuracies and bi-annual precipitation sums was conducted using data from the Tropical Rainfall Measuring Mission (TRMM). Increased error rates occurred in years with high rainfall rates compared to dry rainy seasons. Remote Sens. 2009, 1 62

    Table 2 Overview of the established BIOTA Observatories in Africa & Appendix

    No full text
    The international, interdisciplinary biodiversity research project BIOTA AFRICA initiated a standardized biodiversity monitoring network along climatic gradients across the African continent. Due to an identified lack of adequate monitoring designs, BIOTA AFRICA developed and implemented the standardized BIOTA Biodiversity Observatories, that meet the following criteria (a) enable long-term monitoring of biodiversity, potential driving factors, and relevant indicators with adequate spatial and temporal resolution, (b) facilitate comparability of data generated within different ecosystems, (c) allow integration of many disciplines, (d) allow spatial up-scaling, and (e) be applicable within a network approach. A BIOTA Observatory encompasses an area of 1 km2 and is subdivided into 100 1-ha plots. For meeting the needs of sampling of different organism groups, the hectare plot is again subdivided into standardized subplots, whose sizes follow a geometric series. To allow for different sampling intensities but at the same time to characterize the whole square kilometer, the number of hectare plots to be sampled depends on the requirements of the respective discipline. A hierarchical ranking of the hectare plots ensures that all disciplines monitor as many hectare plots jointly as possible. The BIOTA Observatory design assures repeated, multidisciplinary standardized inventories of biodiversity and its environmental drivers, including options for spatial up- and downscaling and different sampling intensities. BIOTA Observatories have been installed along climatic and landscape gradients in Morocco, West Africa, and southern Africa. In regions with varying land use, several BIOTA Observatories are situated close to each other to analyze management effects

    Limited clinical relevance of imaging techniques in the follow-up of patients with advanced chronic lymphocytic leukemia: results of a meta-analysis

    No full text
    The clinical value of imaging is well established for the follow-up of many lymphoid malignancies but not for chronic lymphocytic leukemia (CLL). A meta-analysis was performed with the dataset of 3 German CLL Study Group phase 3 trials (CLL4, CLL5, and CLL8) that included 1372 patients receiving first-line therapy for CLL. Response as well as progression during follow-up was reassessed according to the National Cancer Institute Working Group1996 criteria. A total of 481 events were counted as progressive disease during treatment or follow-up. Of these, 372 progressions (77%) were detected by clinical symptoms or blood counts. Computed tomography (CT) scans or ultrasound were relevant in 44 and 29 cases (9% and 6%), respectively. The decision for relapse treatment was determined by CT scan or ultrasound results in only 2 of 176 patients (1%). CT scan results had an impact on the prognosis of patients in complete remission only after the administration of conventional chemotherapy but not after chemoimmunotherapy. In conclusion, physical examination and blood count remain the methods of choice for staging and clinical follow-up of patients with CLL as recommended by the International Workshop on Chronic Lymphocytic Leukemia 2008 guidelines. These trials are registered at http://www.isrctn.org as ISRCTN 75653261 and ISRCTN 36294212 and at http://www.clinicaltrials.gov as NCT00281918
    corecore