37 research outputs found

    The Na I D resonance lines in main sequence late-type stars

    Get PDF
    We study the sodium D lines (D1: 5895.92 \AA; D2: 5889.95 \AA) in late-type dwarf stars. The stars have spectral types between F6 and M5.5 (B-V between 0.457 and 1.807) and metallicity between [Fe/H] = -0.82 and 0.6. We obtained medium resolution echelle spectra using the 2.15-m telescope at the argentinian observatory CASLEO. The observations have been performed periodically since 1999. The spectra were calibrated in wavelength and in flux. A definition of the pseudo-continuum level is found for all our observations. We also define a continuum level for calibration purposes. The equivalent width of the D lines is computed in detail for all our spectra and related to the colour index (B-V) of the stars. When possible, we perform a careful comparison with previous studies. Finally, we construct a spectral index (R_D') as the ratio between the flux in the D lines, and the bolometric flux. We find that, once corrected for the photospheric contribution, this index can be used as a chromospheric activity indicator in stars with a high level of activity. Additionally, we find that combining some of our results, we obtain a method to calibrate in flux stars of unknown colour.Comment: 12 pages, including 14 figures and 4 tables. Accepted for publication in MNRA

    Variations of early postmortem pH in carcasses of grass-fed steers and its relationship with glycolytic potential and meat quality traits

    Get PDF
    This study aimed to investigate the multivariate relationship between the glycolytic potential, and meat quality traits from grass-fed steers carcasses with variations in early postmortem pH. From a contemporary group of steers (n=70) from the same production unit and slaughtered under similar conditions, thirty carcasses (10/group) were selected based on pH values measured at 3h (pH3h): Low (< 6.2), Intermediate pH3h (6.2–6.5), and High (> 6.5). Carcasses segregated by pH3h groups were different (p < 0.05) in muscular glycogen (MCG), glucose (G+G6P) content, glycolytic potential (GP) and GPstrict (GP without lactate content). The interaction pH3h groups × sampling time was significant only for lactate content (LC) (p < 0.05). Quality traits, except redness, did not vary (p > 0.05) among pH3h groups. Color variables had a positive and moderate correlation with MGC, G+G6P, LC, and GP. Results does not allow to recommend early carcass segregation by very early pH (3h postmortem); however, important bivariate and multivariate relationships between G+G6P, lactate content and instrumental color parameters in LL muscle from grass-fed cattle were demonstrated

    Lipoperoxidation and Protein Oxidative Damage Exhibit Different Kinetics During Septic Shock

    Get PDF
    Septic shock (SS)-related multiorgan dysfunction has been associated with oxidative damage, but little is known about the temporal damage profile and its relationship to severity. The present work investigated prospectively 21 SS patients. Blood samples were obtained at diagnosis, 24, 72 hours, day 7, and at 3 months. At admission, thiobarbituric acid reactive substances (TBARSs), plasma protein carbonyls, plasma protein methionine sulfoxide (MS), ferric/reducing antioxidant power (FRAP), total red blood cell glutathione (RBCG), uric acid (UA), and bilirrubin levels were increased (P < .05). Total radical—trapping antioxidant potential (TRAP) and vitamin-E were similar to controls, and vitamin-C was decreased (P < .05). During evolution, TBARS and RBCG increased (P < .001), vitamin-E levels remained stable, whereas plasma protein carbonyls and MS, TRAP, vitamin-C, reduced glutathione, and UA levels decreased (P < .006). After 3 months, plasma protein carbonyls and MS persisted elevated. More severe patients exhibited higher TBARS, TRAP, FRAP, vitamin-C, UA, and bilirrubin levels. Our results suggest early and persistent oxidative stress during septic shock and a correlation between increasing levels of lipoperoxidation and sepsis severity

    Variations of early postmortem pH in carcasses of grass-fed steers and its relationship with glycolytic potential and meat quality traits

    Get PDF
    This study aimed to investigate the multivariate relationship between the glycolytic potential, and meat quality traits from grass-fed steers carcasses with variations in early postmortem pH. From a contemporary group of steers (n=70) from the same production unit and slaughtered under similar conditions, thirty carcasses (10/group) were selected based on pH values measured at 3h (pH3h): Low ( 6.5). Carcasses segregated by pH3h groups were different (p 0.05) among pH3h groups. Color variables had a positive and moderate correlation with MGC, G+G6P, LC, and GP. Results does not allow to recommend early carcass segregation by very early pH (3h postmortem); however, important bivariate and multivariate relationships between G+G6P, lactate content and instrumental color parameters in LL muscle from grass-fed cattle were demonstrated

    Chromospheric changes in K stars with activity

    Full text link
    We study the differences in chromospheric structure induced in K stars by stellar activity, to expand our previous work for G stars, including the Sun as a star. We selected six stars of spectral type K with 0.82<BV<<B-V<0.90, including the widely studied Epsilon Eridani and a variety of magnetic activity levels. We computed chromospheric models for the stars in the sample, in most cases in two different moments of activity. The models were constructed to obtain the best possible match with the Ca II K and the Hβ\beta observed profiles. We also computed in detail the net radiative losses for each model to constrain the heating mechanism that can maintain the structure in the atmosphere. We find a strong correlation between these losses and \Sc, the index generally used as a proxy for activity, as we found for G stars

    Constraints on the structure and seasonal variations of Triton's atmosphere from the 5 October 2017 stellar occultation and previous observations

    Get PDF
    Context. A stellar occultation by Neptune's main satellite, Triton, was observed on 5 October 2017 from Europe, North Africa, and the USA. We derived 90 light curves from this event, 42 of which yielded a central flash detection. Aims. We aimed at constraining Triton's atmospheric structure and the seasonal variations of its atmospheric pressure since the Voyager 2 epoch (1989). We also derived the shape of the lower atmosphere from central flash analysis. Methods. We used Abel inversions and direct ray-tracing code to provide the density, pressure, and temperature profiles in the altitude range similar to 8 km to similar to 190 km, corresponding to pressure levels from 9 mu bar down to a few nanobars. Results. (i) A pressure of 1.18 +/- 0.03 mu bar is found at a reference radius of 1400 km (47 km altitude). (ii) A new analysis of the Voyager 2 radio science occultation shows that this is consistent with an extrapolation of pressure down to the surface pressure obtained in 1989. (iii) A survey of occultations obtained between 1989 and 2017 suggests that an enhancement in surface pressure as reported during the 1990s might be real, but debatable, due to very few high S/N light curves and data accessible for reanalysis. The volatile transport model analysed supports a moderate increase in surface pressure, with a maximum value around 2005-2015 no higher than 23 mu bar. The pressures observed in 1995-1997 and 2017 appear mutually inconsistent with the volatile transport model presented here. (iv) The central flash structure does not show evidence of an atmospheric distortion. We find an upper limit of 0.0011 for the apparent oblateness of the atmosphere near the 8 km altitude.J.M.O. acknowledges financial support from the Portuguese Foundation for Science and Technology (FCT) and the European Social Fund (ESF) through the PhD grant SFRH/BD/131700/2017. The work leading to these results has received funding from the European Research Council under the European Community's H2020 2014-2021 ERC grant Agreement nffi 669416 "Lucky Star". We thank S. Para who supported some travels to observe the 5 October 2017 occultation. T.B. was supported for this research by an appointment to the National Aeronautics and Space Administration (NASA) Post-Doctoral Program at the Ames Research Center administered by Universities Space Research Association (USRA) through a contract with NASA. We acknowledge useful exchanges with Mark Gurwell on the ALMA CO observations. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium).Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. J.L.O., P.S.-S., N.M. and R.D. acknowledge financial support from the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award to the Instituto de Astrofisica de Andalucia (SEV-2017-0709), they also acknowledge the financial support by the Spanish grant AYA-2017-84637-R and the Proyecto de Excelencia de la Junta de Andalucia J.A. 2012-FQM1776. The research leading to these results has received funding from the European Union's Horizon 2020 Research and Innovation Programme, under Grant Agreement no. 687378, as part of the project "Small Bodies Near and Far" (SBNAF). P.S.-S. acknowledges financial support by the Spanish grant AYA-RTI2018-098657-J-I00 "LEO-SBNAF". The work was partially based on observations made at the Laboratorio Nacional de Astrofisica (LNA), Itajuba-MG, Brazil. The following authors acknowledge the respective CNPq grants: F.B.-R. 309578/2017-5; R.V.-M. 304544/2017-5, 401903/2016-8; J.I.B.C. 308150/2016-3 and 305917/2019-6; M.A. 427700/20183, 310683/2017-3, 473002/2013-2. This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior -Brasil (CAPES) -Finance Code 001 and the National Institute of Science and Technology of the e-Universe project (INCT do e-Universo, CNPq grant 465376/2014-2). G.B.R. acknowledges CAPES-FAPERJ/PAPDRJ grant E26/203.173/2016 and CAPES-PRINT/UNESP grant 88887.571156/2020-00, M.A. FAPERJ grant E26/111.488/2013 and A.R.G.Jr. FAPESP grant 2018/11239-8. B.E.M. thanks CNPq 150612/2020-6 and CAPES/Cofecub-394/2016-05 grants. Part of the photometric data used in this study were collected in the frame of the photometric observations with the robotic and remotely controlled telescope at the University of Athens Observatory (UOAO; Gazeas 2016). The 2.3 m Aristarchos telescope is operated on Helmos Observatory by the Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing of the National Observatory of Athens. Observations with the 2.3 m Aristarchos telescope were carried out under OPTICON programme. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730890. This material reflects only the authors views and the Commission is not liable for any use that may be made of the information contained therein. The 1. 2m Kryoneri telescope is operated by the Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing of the National Observatory of Athens. The Astronomical Observatory of the Autonomous Region of the Aosta Valley (OAVdA) is managed by the Fondazione Clement Fillietroz-ONLUS, which is supported by the Regional Government of the Aosta Valley, the Town Municipality of Nus and the "Unite des Communes valdotaines Mont-Emilius". The 0.81 m Main Telescope at the OAVdA was upgraded thanks to a Shoemaker NEO Grant 2013 from The Planetary Society. D.C. and J.M.C. acknowledge funds from a 2017 'Research and Education' grant from Fondazione CRT-Cassa di Risparmio di Torino. P.M. acknowledges support from the Portuguese Fundacao para a Ciencia e a Tecnologia ref. PTDC/FISAST/29942/2017 through national funds and by FEDER through COMPETE 2020 (ref. POCI010145 FEDER007672). F.J. acknowledges Jean Luc Plouvier for his help. S.J.F. and C.A. would like to thank the UCL student support observers: Helen Dai, Elise Darragh-Ford, Ross Dobson, Max Hipperson, Edward Kerr-Dineen, Isaac Langley, Emese Meder, Roman Gerasimov, Javier Sanjuan, and Manasvee Saraf. We are grateful to the CAHA, OSN and La Hita Observatory staffs. This research is partially based on observations collected at Centro Astronomico HispanoAleman (CAHA) at Calar Alto, operated jointly by Junta de Andalucia and Consejo Superior de Investigaciones Cientificas (IAA-CSIC). This research was also partially based on observation carried out at the Observatorio de Sierra Nevada (OSN) operated by Instituto de Astrofisica de Andalucia (CSIC). This article is also based on observations made with the Liverpool Telescope operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council. Partially based on observations made with the Tx40 and Excalibur telescopes at the Observatorio Astrofisico de Javalambre in Teruel, a Spanish Infraestructura Cientifico-Tecnica Singular (ICTS) owned, managed and operated by the Centro de Estudios de Fisica del Cosmos de Aragon (CEFCA). Tx40 and Excalibur are funded with the Fondos de Inversiones de Teruel (FITE). A.R.R. would like to thank Gustavo Roman for the mechanical adaptation of the camera to the telescope to allow for the observation to be recorded. R.H., J.F.R., S.P.H. and A.S.L. have been supported by the Spanish projects AYA2015-65041P and PID2019-109467GB-100 (MINECO/FEDER, UE) and Grupos Gobierno Vasco IT1366-19. Our great thanks to Omar Hila and their collaborators in Atlas Golf Marrakech Observatory for providing access to the T60cm telescope. TRAPPIST is a project funded by the Belgian Fonds (National) de la Recherche Scientifique (F.R.S.-FNRS) under grant PDR T.0120.21. TRAPPIST-North is a project funded by the University of Liege, and performed in collaboration with Cadi Ayyad University of Marrakesh. E.J. is a FNRS Senior Research Associate

    Spinal Reactive Oxygen Species and Oxidative Damage Mediate Chronic Pain in Lame Dairy Cows

    No full text
    Simple Summary Chronic inflammatory diseases could impact central nervous system homeostasis, being oxidative damage of the dorsal horn, a relevant mechanism mediating central sensitization. Chronic inflammatory lameness in dairy cows is a painful condition that affects animal welfare, affecting dairy production worldwide. This study reveals increased levels of reactive oxygen species, malondialdehyde, and carbonyl groups, indicating lipid and protein damage in the spinal cord of cows with chronic lameness. Moreover, antioxidant system activity was similar between lame and non-lame cows which suggests that antioxidant dysregulation was not the cause of oxidative damage, as has been proposed previously. Based on the fact that nociceptive pathways are strongly conserved between species, there is no reason to neglect that chronic pain in cows promotes Central Nervous System (CNS) alterations, such as oxidative damage. Moreover, lame cows develop central sensitization, as allodynia and hyperalgesia are centrally and not peripherally mediated. Our results support the current assumption that chronic pain is a central nervous system disease and lameness in dairy cows is far beyond an inflammation of the hoof. Lameness in dairy cows is a worldwide prevalent disease with a negative impact on animal welfare and herd economy. Oxidative damage and antioxidant system dysfunction are common features of many CNS diseases, including chronic pain. The aim of this study was to evaluate the levels of reactive oxygen species (ROS) and oxidative damage markers in the spinal cord of dairy cows with chronic inflammatory lameness. Locomotion score was performed in order to select cows with chronic lameness. Dorsal horn spinal cord samples were obtained post mortem from lumbar segments (L2-L5), and ROS, malondialdehyde (MDA), and carbonyl groups were measured along with the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and total antioxidant response (TAR). Lame cows had increased levels of ROS, MDA, and carbonyl groups, while no differences were observed between lame and non-lame cows in SOD, GPx, CAT, and TAR activity. We conclude that painful chronic inflammatory lameness in dairy cows is associated with an increase in ROS, MDA, and carbonyl groups. Nonetheless, an association between ROS generation and dysfunction of the antioxidant system, as previously proposed, could not be established
    corecore