57 research outputs found

    Data Basin Climate Center: sharing and manipulating spatial information on the web

    Get PDF
    Monitoring datasets is essential to detect changes that are occurring and identify thresholds that cause them, but scientists around the world are now generating large volumes of data that vary in quality, format, supporting documentation, and accessibility. Moreover, diverse models are being run at various spatial and temporal scales to try and understand past climate variability and its impacts, generate future climate and land use scenarios, and project potential future impacts to the planet. Conservation practitioners and land managers are struggling to synthesize this wealth of information, identify relevant and usable datasets, and translate evolving science results into on-the-ground climate-aware strategies.
In partnership with ESRI and Mambo media, the Conservation Biology Institute (CBI) is developing a versatile web-based resource that centralizes usable climate change-relevant datasets and provides analytical tools to visualize, analyze, and communicate findings for practical applications. To illustrate its capability to store, manipulate, and derive relevant conclusions to users, we present three examples of projects involving scientists and managers that are part of the Climate Center of Data Basin (http://www.databasin.org): a conservation project in the Puget Sound area of Washington State, a climate change impacts project in California, a North American project looking at climate change impacts on Canada lynx. We conclude by showing the use of this new web tool in workshops that bring together scientists and practitioners, allowing all to access the data and develop more effective management strategies

    Data Basin Climate Center: sharing and manipulating spatial information on the web

    Get PDF
    Monitoring datasets is essential to detect changes that are occurring and identify thresholds that cause them, but scientists around the world are now generating large volumes of data that vary in quality, format, supporting documentation, and accessibility. Moreover, diverse models are being run at various spatial and temporal scales to try and understand past climate variability and its impacts, generate future climate and land use scenarios, and project potential future impacts to the planet. Conservation practitioners and land managers are struggling to synthesize this wealth of information, identify relevant and usable datasets, and translate evolving science results into on-the-ground climate-aware strategies.
In partnership with ESRI and Mambo media, the Conservation Biology Institute (CBI) is developing a versatile web-based resource that centralizes usable climate change-relevant datasets and provides analytical tools to visualize, analyze, and communicate findings for practical applications. To illustrate its capability to store, manipulate, and derive relevant conclusions to users, we present three examples of projects involving scientists and managers that are part of the Climate Center of Data Basin (http://www.databasin.org): a conservation project in the Puget Sound area of Washington State, a climate change impacts project in California, a North American project looking at climate change impacts on Canada lynx. We conclude by showing the use of this new web tool in workshops that bring together scientists and practitioners, allowing all to access the data and develop more effective management strategies

    Evaluating areas of high conservation value in western Oregon with a decision-support model

    Get PDF
    Abstract: The Northwest Forest Plan was implemented in 1994 to protect habitat for species associated with old-growth forests, including Northern Spotted Owls (Strix occidentailis caurina) in . Nevertheless, Resumen: El Plan Forestal Noroccidental fue implementado en 1994 para proteger el hábitat para especies asociadas con bosques maduros, incluyendo Strix occidentailis caurina en Washington, Oregon y norte de California (E. U. A.). Sin embargo, datos de monitoreo durante 10 años indicanéxito mixto en el logro de las metas ecológicas del plan. Utilizamos el modelo de respaldo a la toma de decisiones para el manejo de ecosistemas para evaluar hábitats terrestres y acuáticos en el paisaje con base en los objetivos ecológicos de

    Maintaining ecosystem resilience: functional responses of tree cavity nesters to logging in temperate forests of the Americas

    Get PDF
    Logging often reduces taxonomic diversity in forest communities, but little is known about how this biodiversity loss affects the resilience of ecosystem functions. We examined how partial logging and clearcutting of temperate forests influenced functional diversity of birds that nest in tree cavities. We used point-counts in a before-after-control-impact design to examine the effects of logging on the value, range, and density of functional traits in bird communities in Canada (21 species) and Chile (16 species). Clearcutting, but not partial logging, reduced diversity in both systems. The effect was much more pronounced in Chile, where logging operations removed critical nesting resources (large decaying trees), than in Canada, where decaying aspen Populus tremuloides were retained on site. In Chile, logging was accompanied by declines in species richness, functional richness (amount of functional niche occupied by species), community-weighted body mass (average mass, weighted by species densities), and functional divergence (degree of maximization of divergence in occupied functional niche). In Canada, clearcutting did not affect species richness but nevertheless reduced functional richness and community-weighted body mass. Although some cavity-nesting birds can persist under intensive logging operations, their ecosystem functions may be severely compromised unless future nest trees can be retained on logged sites.Fil: Ibarra, José Tomás. University of British Columbia; Canadá. Pontificia Universidad Católica de Chile; ChileFil: Martin, Michaela. University of British Columbia; CanadáFil: Cockle, Kristina Louise. University of British Columbia; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Martin, Kathy. University of British Columbia; Canad

    Roadless wilderness area determines forest elephant movements in the Congo Basin

    Get PDF
    A dramatic expansion of road building is underway in the Congo Basin fuelled by private enterprise, international aid, and government aspirations. Among the great wilderness areas on earth, the Congo Basin is outstanding for its high biodiversity, particularly mobile megafauna including forest elephants (Loxodonta africana cyclotis). The abundance of many mammal species in the Basin increases with distance from roads due to hunting pressure, but the impacts of road proliferation on the movements of individuals are unknown. We investigated the ranging behaviour of forest elephants in relation to roads and roadless wilderness by fitting GPS telemetry collars onto a sample of 28 forest elephants living in six priority conservation areas. We show that the size of roadless wilderness is a strong determinant of home range size in this species. Though our study sites included the largest wilderness areas in central African forests, none of 4 home range metrics we calculated, including core area, tended toward an asymptote with increasing wilderness size, suggesting that uninhibited ranging in forest elephants no longer exists. Furthermore we show that roads outside protected areas which are not protected from hunting are a formidable barrier to movement while roads inside protected areas are not. Only 1 elephant from our sample crossed an unprotected road. During crossings her mean speed increased 14-fold compared to normal movements. Forest elephants are increasingly confined and constrained by roads across the Congo Basin which is reducing effective habitat availability and isolating populations, significantly threatening long term conservation efforts. If the current road development trajectory continues, forest wildernesses and the forest elephants they contain will collapse

    Roadless and Low-Traffic Areas as Conservation Targets in Europe

    Get PDF
    With increasing road encroachment, habitat fragmentation by transport infrastructures has been a serious threat for European biodiversity. Areas with no roads or little traffic (“roadless and low-traffic areas”) represent relatively undisturbed natural habitats and functioning ecosystems. They provide many benefits for biodiversity and human societies (e.g., landscape connectivity, barrier against pests and invasions, ecosystem services). Roadless and low-traffic areas, with a lower level of anthropogenic disturbances, are of special relevance in Europe because of their rarity and, in the context of climate change, because of their contribution to higher resilience and buffering capacity within landscape ecosystems. An analysis of European legal instruments illustrates that, although most laws aimed at protecting targets which are inherent to fragmentation, like connectivity, ecosystem processes or integrity, roadless areas are widely neglected as a legal target. A case study in Germany underlines this finding. Although the Natura 2000 network covers a significant proportion of the country (16%), Natura 2000 sites are highly fragmented and most low-traffic areas (75%) lie unprotected outside this network. This proportion is even higher for the old Federal States (western Germany), where only 20% of the low-traffic areas are protected. We propose that the few remaining roadless and low-traffic areas in Europe should be an important focus of conservation efforts; they should be urgently inventoried, included more explicitly in the law and accounted for in transport and urban planning. Considering them as complementary conservation targets would represent a concrete step towards the strengthening and adaptation of the Natura 2000 network to climate change
    corecore