13 research outputs found

    Community recommendations on terminology and procedures used in flooding and low oxygen stress research

    Get PDF
    Apart from playing a key role in important biochemical reactions, molecular oxygen (O2) and its by-products also have crucial signaling roles in shaping plant developmental programs and environmental responses. Even under normal conditions, sharp O2 gradients can occur within the plant when cellular O2 demand exceeds supply, especially in dense organs such as tubers, seeds and fruits. Spatial and temporal variations in O2 concentrations are important cues for plants to modulate development (van Dongen & Licausi, 2015; Considine et al., 2016). Environmental conditions can also expand the low O2 regions within the plant. For example, excessive rainfall can lead to partial or complete plant submergence resulting in O2 deficiency in the root or the entire plant (Voesenek & Bailey-Serres, 2015). Climate change-associated increases in precipitation events have made flooding a major abiotic stress threatening crop production and food sustainability. This increased flooding and associated crop losses highlight the urgency of understanding plant flooding responses and tolerance mechanisms. Timely manifestation of physiological and morphological changes triggering developmental adjustments or flooding survival strategies requires accurate sensing of O2 levels. Despite progress in understanding how plants sense and respond to changes in intracellular O2 concentrations (van Dongen & Licausi, 2015), several questions remain unanswered due to a lack of high resolution tools to accurately and noninvasively monitor (sub)cellular O2 concentrations. In the absence of such tools, it is therefore critical for researchers in the field to be aware of how experimental conditions can influence plant O2 levels, and thus on the importance of accurately reporting specific experimental details. This also requires a consensus on the definition of frequently used terms. At the 15th New Phytologist Workshop on Flooding stress (Voesenek et al., 2016), community members discussed and agreed on unified nomenclature and standard norms for low O2 and flooding stress research. This consensus on terminology and experimental guidelines is presented here. We expect that these norms will facilitate more effective interpretation, comparison and reproducibility of research in this field. We also highlight the current challenges in noninvasively monitoring and measuring O2 concentrations in plant cells, outlining the technologies currently available, their strengths and drawbacks, and their suitability for use in flooding and low O2 research

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    PapG adhesin from E. coli J96 recognizes the same saccharide epitope when present on whole bacteria and as isolated protein

    No full text
    Purified PapG adhesin from the genetically well-defined uropathogenic Escherichia coli strain J96, as well as whole bacteria, were bound to microtiter plates that carried covalently bound globotetraose and galabiose. The binding was inhibited by soluble saccharide derivatives corresponding to the globoseries of glycolipids, including all di-, tri-, tetra-, and pentasaccharide fragments of the Forssman antigen and all monodeoxy analogues of galabiose. Analysis of the inhibition pattern showed no significant difference between purified adhesin and whole bacteria. The glucose unit at the reducing end of the natural saccharides was detrimental to PapG binding since deletion of the glucose unit increased the inhibitory power 10-20 fold. The five hydroxyl groups HO-6, -2', -3', -4', -6' of the galabiose unit were shown to be important for PapG binding, presumably via intermolecular hydrogen bonds

    Community recommendations on terminology and procedures used in flooding and low oxygen stress research

    No full text
    Apart from playing a key role in important biochemical reactions, molecular oxygen (O2) and its by-products also have crucial signaling roles in shaping plant developmental programs and environmental responses. Even under normal conditions, sharp O2 gradients can occur within the plant when cellular O2 demand exceeds supply, especially in dense organs such as tubers, seeds and fruits. Spatial and temporal variations in O2 concentrations are important cues for plants to modulate development (van Dongen & Licausi, 2015; Considine et al., 2016). Environmental conditions can also expand the low O2 regions within the plant. For example, excessive rainfall can lead to partial or complete plant submergence resulting in O2 deficiency in the root or the entire plant (Voesenek & Bailey-Serres, 2015). Climate change-associated increases in precipitation events have made flooding a major abiotic stress threatening crop production and food sustainability. This increased flooding and associated crop losses highlight the urgency of understanding plant flooding responses and tolerance mechanisms. Timely manifestation of physiological and morphological changes triggering developmental adjustments or flooding survival strategies requires accurate sensing of O2 levels. Despite progress in understanding how plants sense and respond to changes in intracellular O2 concentrations (van Dongen & Licausi, 2015), several questions remain unanswered due to a lack of high resolution tools to accurately and noninvasively monitor (sub)cellular O2 concentrations. In the absence of such tools, it is therefore critical for researchers in the field to be aware of how experimental conditions can influence plant O2 levels, and thus on the importance of accurately reporting specific experimental details. This also requires a consensus on the definition of frequently used terms. At the 15th New Phytologist Workshop on Flooding stress (Voesenek et al., 2016), community members discussed and agreed on unified nomenclature and standard norms for low O2 and flooding stress research. This consensus on terminology and experimental guidelines is presented here. We expect that these norms will facilitate more effective interpretation, comparison and reproducibility of research in this field. We also highlight the current challenges in noninvasively monitoring and measuring O2 concentrations in plant cells, outlining the technologies currently available, their strengths and drawbacks, and their suitability for use in flooding and low O2 research

    DASH Score and Subsequent Risk of Coronary Artery Disease: The Findings From Million Veteran Program

    No full text
    While adherence to healthful dietary patterns has been associated with a lower risk of coronary artery disease (CAD) in the general population, limited data are available among US veterans. We tested the hypothesis that adherence to Dietary Approach to Stop Hypertension (DASH) food pattern is associated with a lower risk of developing CAD among veterans. We analyzed data on 153 802 participants of the Million Veteran Program enrolled between 2011 and 2016. Information on dietary habits was obtained using a food frequency questionnaire at enrollment. We used electronic health records to assess the development of CAD during follow-up. Of the 153 802 veterans who provided information on diet and were free of CAD at baseline, the mean age was 64.0 (SD=11.8) years and 90.4% were men. During a mean follow-up of 2.8 years, 5451 CAD cases occurred. The crude incidence rate of CAD was 14.0, 13.1, 12.6, 12.3, and 11.1 cases per 1000 person-years across consecutive quintiles of Dietary Approach to Stop Hypertension score. Hazard ratios (95% confidence interval) for CAD were 1.0 (ref), 0.91 (0.84-0.99), 0.87 (0.80-0.95), 0.86 (0.79-0.94), and 0.80 (0.73-0.87) from the lowest to highest quintile of Dietary Approach to Stop Hypertension score controlling for age, sex, body mass index, race, smoking, exercise, alcohol intake, and statin use (P linear trend, <0.0001). Our data are consistent with an inverse association between Dietary Approach to Stop Hypertension diet score and incidence of CAD among US veterans

    Gender Differences in Demographic and Health Characteristics of the Million Veteran Program Cohort

    No full text
    corecore