63 research outputs found

    Waterlogging of Winter Crops at Early and Late Stages: Impacts on Leaf Physiology, Growth and Yield

    Get PDF
    Waterlogging is expected to increase as a consequence of global climate change, constraining crop production in various parts of the world. This study assessed tolerance to 14-days of early- or late-stage waterlogging of the major winter crops wheat, barley, rapeseed and field pea. Aerenchyma formation in adventitious roots, leaf physiological parameters (net photosynthesis, stomatal and mesophyll conductances, chlorophyll fluorescence), shoot and root growth during and after waterlogging, and seed production were evaluated. Wheat produced adventitious roots with 20–22% of aerenchyma, photosynthesis was maintained during waterlogging, and seed production was 86 and 71% of controls for early- and late-waterlogging events. In barley and rapeseed, plants were less affected by early- than by late-waterlogging. Barley adventitious roots contained 19% aerenchyma, whereas rapeseed did not form aerenchyma. In barley, photosynthesis was reduced during early-waterlogging mainly by stomatal limitations, and by non-stomatal constraints (lower mesophyll conductance and damage to photosynthetic apparatus as revealed by chlorophyll fluorescence) during late-waterlogging. In rapeseed, photosynthesis was mostly reduced by non-stomatal limitations during early- and late-waterlogging, which also impacted shoot and root growth. Early-waterlogged plants of both barley and rapeseed were able to recover in growth upon drainage, and seed production reached ca. 79–85% of the controls, while late-waterlogged plants only attained 26–32% in seed production. Field pea showed no ability to develop root aerenchyma when waterlogged, and its photosynthesis (and stomatal and mesophyll conductances) was rapidly decreased by the stress. Consequently, waterlogging drastically reduced field pea seed production to 6% of controls both at early- and late-stages with plants being unable to resume growth upon drainage. In conclusion, wheat generates a set of adaptive responses to withstand 14 days of waterlogging, barley and rapeseed can still produce significant yield if transiently waterlogged during early plant stages but are more adversely impacted at the late stage, and field pea is not suitable for areas prone to waterlogging events of 14 days at either growth stage

    A screen for kinase inhibitors identifies antimicrobial imidazopyridine aminofurazans as specific inhibitors of the Listeria monocytogenes PASTA kinase PrkA

    Get PDF
    Bacterial signaling systems such as protein kinases and quorum sensing have become increasingly attractive targets for the development of novel antimicrobial agents in a time of rising antibiotic resistance. The family of bacterial Penicillin-binding-protein And Serine/Threonine kinase-Associated (PASTA) kinases is of particular interest due to the role of these kinases in regulating resistance to β-lactam antibiotics. As such, small-molecule kinase inhibitors that target PASTA kinases may prove beneficial as treatments adjunctive to β-lactam therapy. Despite this interest, only limited progress has been made in identifying functional inhibitors of the PASTA kinases that have both activity against the intact microbe and high kinase specificity. Here, we report the results of a small-molecule screen that identified GSK690693, an imidazopyridine aminofurazan-type kinase inhibitor that increases the sensitivity of the intracellular pathogen Listeria monocytogenes to various β-lactams by inhibiting the PASTA kinase PrkA. GSK690693 potently inhibited PrkA kinase activity biochemically and exhibited significant selectivity for PrkA relative to the Staphylococcus aureus PASTA kinase Stk1. Furthermore, other imidazopyridine aminofurazans could effectively inhibit PrkA and potentiate β-lactam antibiotic activity to varying degrees. The presence of the 2-methyl-3-butyn-2-ol (alkynol) moiety was important for both biochemical and antimicrobial activity. Finally, mutagenesis studies demonstrated residues in the back pocket of the active site are important for GSK690693 selectivity. These data suggest that targeted screens can successfully identify PASTA kinase inhibitors with both biochemical and antimicrobial specificity. Moreover, the imidazopyridine aminofurazans represent a family of PASTA kinase inhibitors that have the potential to be optimized for selective PASTA kinase inhibition

    Digital Publishing with Minimal Computing (UMD-USAL, 2020): Our Experience as Students

    Get PDF
    En este trabajo compartiremos nuestra experiencia como estudiantes del curso Digital Publishing with Minimal Computing/Ediciones digitales con minimal computing, que fue impartido en modalidad virtual por Raffaele Viglianti (University of Maryland), Gimena del Rio Riande, Romina De León y Nidia Hernández (Consejo Nacional de Investigaciones Científicas y Técnicas) entre septiembre y diciembre de 2020. Nos interesa desarrollar las oportunidades y dificultades que percibimos al trabajar con el lenguaje de marcado XML y el estándar desarrollado por la Text Encoding Initiative para abordar nuestra primera edición digital de un texto –en particular, la “Descripción de Buenos Aires”, contenida en Relación de un viaje al Río de la Plata, de Acarete du Biscay (siglo XVII), publicado tanto en inglés (1698) como en castellano (1867)–, mediante tecnologías abiertas como GitLab y Jekyll para su publicación en un sitio web. Sin duda, la metodología colaborativa empleada nos anima a emprender otras tareas y proyectos de Humanidades.Our work shares the experience of the course Digital Publishing with Minimal Computing/Ediciones digitales con minimal computing, which was taught in virtual modality by Raffaele Vigli-anti (University of Maryland) and Gimena del Rio Riande, Romina De León and Nidia Hernández (Consejo Nacional de Investigaciones Científicas y Técnicas) between September and December 2020. We are interested in ing the opportunities and difficulties that we perceived when working with the XML markup language and the standard developed by the Text Encoding Initiative to address our first digital edition of a text ‒especially, “A description of Buenos Aires”, contained in An account of a voyage up the River de la Plata, from Acarete du Biscay (17th century)‒ published in both English (1698) and Spanish (1867) and, at the same time, with open technologies such as GitLab and Jekyll to achieve its publication on a website. Undoubtedly, the collaborative methodology encourages us to undertake other tasks and projects of Digital Humanities.Universidad Nacional de La PlataAsociación Argentina de Humanidades Digitale

    Seismic imaging in Long Valley, California, by surface and borehole techniques: An investigation of active tectonics

    Get PDF
    The search for silicic magma in the upper crust is converging on the Long Valley Caldera of eastern California, where several lines of geophysical evidence show that an active magma chamber exists at mid‐to lower‐crustal depths. There are also other strong indications that magma may be present at depths no greater than about 5 km below the surface. In this paper, we review the history of the search for magma at Long Valley. We also present the preliminary results from a coordinated suite of seismic experiments, conducted by a consortium of institutions in the summer and fall of 1984, that were designed to refine our knowledge of the upper extent of the magma chamber. Major funding for the experiments was provided by the Geothermal Research Program of the U.S. Geological Survey (USGS) and by the Magma Energy Technology Program of the U.S. Department of Energy (DOE), a program to develop the technology necessary to extract energy directly from crustal magma. Additional funding came from DOE's Office of Basic Energy Sciences and the National Science Foundation (NSF). Also, because extensive use was made of a 0.9‐km‐deep well lent to us by Santa Fe Geothermal, Inc., the project was conducted partly under the auspices of the Continental Scientific Drilling Program (CSDP). As an integrated seismic study of the crust within the caldera that involved the close cooperation of a large number of institutions, the project was moreover viewed as a prototype for future scientific experiments to be conducted under the Program for Array Seismic Studies of the Continental Lithosphere (PASSCAL). The experiment thus represented a unique blend of CSDP and PASSCAL methods, and achieved goals consistent with both programs

    Seismic imaging in Long Valley, California, by surface and borehole techniques: An investigation of active tectonics

    Get PDF
    The search for silicic magma in the upper crust is converging on the Long Valley Caldera of eastern California, where several lines of geophysical evidence show that an active magma chamber exists at mid‐to lower‐crustal depths. There are also other strong indications that magma may be present at depths no greater than about 5 km below the surface. In this paper, we review the history of the search for magma at Long Valley. We also present the preliminary results from a coordinated suite of seismic experiments, conducted by a consortium of institutions in the summer and fall of 1984, that were designed to refine our knowledge of the upper extent of the magma chamber. Major funding for the experiments was provided by the Geothermal Research Program of the U.S. Geological Survey (USGS) and by the Magma Energy Technology Program of the U.S. Department of Energy (DOE), a program to develop the technology necessary to extract energy directly from crustal magma. Additional funding came from DOE's Office of Basic Energy Sciences and the National Science Foundation (NSF). Also, because extensive use was made of a 0.9‐km‐deep well lent to us by Santa Fe Geothermal, Inc., the project was conducted partly under the auspices of the Continental Scientific Drilling Program (CSDP). As an integrated seismic study of the crust within the caldera that involved the close cooperation of a large number of institutions, the project was moreover viewed as a prototype for future scientific experiments to be conducted under the Program for Array Seismic Studies of the Continental Lithosphere (PASSCAL). The experiment thus represented a unique blend of CSDP and PASSCAL methods, and achieved goals consistent with both programs

    A Molecular Signature of Proteinuria in Glomerulonephritis

    Get PDF
    Proteinuria is the most important predictor of outcome in glomerulonephritis and experimental data suggest that the tubular cell response to proteinuria is an important determinant of progressive fibrosis in the kidney. However, it is unclear whether proteinuria is a marker of disease severity or has a direct effect on tubular cells in the kidneys of patients with glomerulonephritis. Accordingly we studied an in vitro model of proteinuria, and identified 231 “albumin-regulated genes” differentially expressed by primary human kidney tubular epithelial cells exposed to albumin. We translated these findings to human disease by studying mRNA levels of these genes in the tubulo-interstitial compartment of kidney biopsies from patients with IgA nephropathy using microarrays. Biopsies from patients with IgAN (n = 25) could be distinguished from those of control subjects (n = 6) based solely upon the expression of these 231 “albumin-regulated genes.” The expression of an 11-transcript subset related to the degree of proteinuria, and this 11-mRNA subset was also sufficient to distinguish biopsies of subjects with IgAN from control biopsies. We tested if these findings could be extrapolated to other proteinuric diseases beyond IgAN and found that all forms of primary glomerulonephritis (n = 33) can be distinguished from controls (n = 21) based solely on the expression levels of these 11 genes derived from our in vitro proteinuria model. Pathway analysis suggests common regulatory elements shared by these 11 transcripts. In conclusion, we have identified an albumin-regulated 11-gene signature shared between all forms of primary glomerulonephritis. Our findings support the hypothesis that albuminuria may directly promote injury in the tubulo-interstitial compartment of the kidney in patients with glomerulonephritis

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Modification of Sodium, Glucose, Potassium, and Osmolarity in Packed Red Blood Cells and Fresh Frozen Plasma Using a Desktop Hemoconcentrator Setup

    No full text
    Massive transfusion with packed blood cells (PRBCs) or fresh frozen plasma (FFP) can result in dangerous complications including stroke, kidney failure, and cardiac arrest. A simple, bench top technique using a hemoconcentrator and dialysate solution is described to correct critical values of sodium, glucose, potassium, and osmolarity in PRBCs and FFP. Sodium, glucose, and osmolarity were corrected to normal or near normal values. Elevated potassium was reduced by 65%, but not completely normalized. A simple, bench top method for correcting dangerous abnormalities with PRBCs and FFP can be used to improve the safety of massive blood transfusion

    Short-Term, High-Dose Pamidronate-Induced Acute Tubular Necrosis: The Postulated Mechanisms of Bisphosphonate Nephrotoxicity

    No full text
    A 76-year-old man had biopsy-proven acute tubular necrosis (ATN) after intravenous administration of 3 doses of 60 mg of pamidronate (Aredia) over a 2-week period. Pamidronate was given to treat hypercalcemia of unknown etiology. Other potential causes of acute renal failure were excluded with appropriate investigations. The patient's preexisting renal impairment in the context of high-doses of pamidronate might have been a potentiating factor for nephrotoxicity. The ATN encountered in this patient resolved; however, short-term hemodialysis was needed. To the best of our knowledge, this is the first reported case of short-term, high-dose pamidronate-induced ATN in the absence of concomitant nephrotoxins. Although necrotic and apoptotic cell death after bisphosphonate administration has been seen in a variety of cells, the exact mechanism of nephrotoxicity is unknown. This report presents a case of pamidronate-induced ATN and discusses the potential mechanisms of bisphosphonate-induced nephrotoxicity
    corecore