228 research outputs found
Study of the 12C+12C fusion reactions near the Gamow energy
The fusion reactions 12C(12C,a)20Ne and 12C(12C,p)23Na have been studied from
E = 2.10 to 4.75 MeV by gamma-ray spectroscopy using a C target with ultra-low
hydrogen contamination. The deduced astrophysical S(E)* factor exhibits new
resonances at E <= 3.0 MeV, in particular a strong resonance at E = 2.14 MeV,
which lies at the high-energy tail of the Gamow peak. The resonance increases
the present non-resonant reaction rate of the alpha channel by a factor of 5
near T = 8x10^8 K. Due to the resonance structure, extrapolation to the Gamow
energy E_G = 1.5 MeV is quite uncertain. An experimental approach based on an
underground accelerator placed in a salt mine in combination with a high
efficiency detection setup could provide data over the full E_G energy range.Comment: 4 Pages, 4 figures, accepted for publication in Phys. Rev. Let
Status of the Standard Solar Model Prediction of Solar Neutrino Fluxes
The Standard Solar Model (BP04) predicts a total 8B neutrino flux that is
17.2% larger than measured in the salt phase of the SNO detector (and if it
were significant it will indicate oscillation to sterile neutrinos). Hence it
is important to examine in details uncertainties (and values) of inputs to the
SSM. Currently, the largest fractional uncertainty is due to the new evaluation
of the surface composition of the sun. We examine the nuclear input on the
formation of solar 8B [S17(0)] and demonstrate that it is still quite uncertain
due to ill known slope of the measured astrophysical cross section factor and
thus ill defined extrapolation to zero energy. This yields an additional
reasonably estimated uncertainty due to extrapolation of +0.0 -3.0 eV-b (+0%
-14%). Since a large discrepancy exists among measured as well as among
predicted slopes, the value of S17(0) is dependent on the choice of data and
theory used to extrapolate S17(0). This situation must be alleviated by new
measurement(s). The "world average" is driven by the Seattle result due to the
very small quoted uncertainty, which we however demonstrate it to be an
over-estimated accuracy. We propose more realistic error bars for the Seattle
results based on the published Seattle data.Comment: Fifth International Conferenceon Non-Accelerator New Physics, Dubna,
June 20-25, 2005. Work Supported by USDOE Grant No. DE-FG02-94ER4087
The 21Na(p,gamma)22Mg Reaction and Oxygen-Neon Novae
The 21Na(p,gamma)22Mg reaction is expected to play an important role in the
nucleosynthesis of 22Na in Oxygen-Neon novae. The decay of 22Na leads to the
emission of a characteristic 1.275 MeV gamma-ray line. This report provides the
first direct measurement of the rate of this reaction using a radioactive 21Na
beam, and discusses its astrophysical implications. The energy of the important
state was measured to be E= 205.7 0.5 keV with a resonance
strength meV.Comment: Accepted for publication in Physical Review Letter
Feasibility of low energy radiative capture experiments at the LUNA underground accelerator facility
The LUNA (Laboratory Underground for Nuclear Astrophysics) facility has been
designed to study nuclear reactions of astrophysical interest. It is located
deep underground in the Gran Sasso National Laboratory, Italy. Two
electrostatic accelerators, with 50 and 400 kV maximum voltage, in combination
with solid and gas target setups allowed to measure the total cross sections of
the radiative capture reactions H(p,)3He and
N(p,)O within their relevant Gamow peaks. We report on
the gamma background in the Gran Sasso laboratory measured by germanium and
bismuth germanate detectors, with and without an incident proton beam. A method
to localize the sources of beam induced background using the Doppler shift of
emitted gamma rays is presented. The feasibility of radiative capture studies
at energies of astrophysical interest is discussed for several experimental
scenarios.Comment: Submitted to Eur. Phys. J.
Impacto do arranjo de plantas sobre a incidência, a severidade e o controle das principais doenças da soja.
bitstream/item/160383/1/Doc-387-1.pd
7Be(p,gamma)8B astrophysical S-factor from precision cross section measurements
We measured the 7Be(p,gamma)8B cross section from E_cm = 186 to 1200 keV,
with a statistical-plus-systematic precision per point of better than +- 5%.
All important systematic errors were measured including 8B backscattering
losses. We obtain S_17(0) = 22.3 +- 0.7(expt) +- 0.5(theor) eV-b from our data
at E_cm <= 300 keV and the theory of Descouvemont and Baye.Comment: 4 pages, 4 figure
Solar fusion cross sections II: the pp chain and CNO cycles
We summarize and critically evaluate the available data on nuclear fusion
cross sections important to energy generation in the Sun and other
hydrogen-burning stars and to solar neutrino production. Recommended values and
uncertainties are provided for key cross sections, and a recommended spectrum
is given for 8B solar neutrinos. We also discuss opportunities for further
increasing the precision of key rates, including new facilities, new
experimental techniques, and improvements in theory. This review, which
summarizes the conclusions of a workshop held at the Institute for Nuclear
Theory, Seattle, in January 2009, is intended as a 10-year update and
supplement to Reviews of Modern Physics 70 (1998) 1265.Comment: 54 pages, 20 figures, version to be published in Reviews of Modern
Physics; various typos corrected and several updates mad
The Cross Section of 3He(3He,2p)4He measured at Solar Energies
We report on the results of the \hethet\ experiment at the underground
accelerator facility LUNA (Gran Sasso). For the first time the lowest
projectile energies utilized for the cross section measurement correspond to
energies below the center of the solar Gamow peak (=22 keV). The
data provide no evidence for the existence of a hypothetical resonance in the
energy range investigated. Although no extrapolation is needed anymore (except
for energies at the low-energy tail of the Gamow peak), the data must be
corrected for the effects of electron screening, clearly observed the first
time for the \hethet\ reaction. The effects are however larger than expected
and not understood, leading presently to the largest uncertainty on the quoted
value for bare nuclides (=5.40 MeV b).Comment: 18 pages, 10 postscript figures, Calculations concerning hypothetical
resonanz added, Submitted to Phys. Rev. C., available at this URL:
HTTP://www.lngs.infn.it/lngs/htexts/luna/luna.htm
- …