The Standard Solar Model (BP04) predicts a total 8B neutrino flux that is
17.2% larger than measured in the salt phase of the SNO detector (and if it
were significant it will indicate oscillation to sterile neutrinos). Hence it
is important to examine in details uncertainties (and values) of inputs to the
SSM. Currently, the largest fractional uncertainty is due to the new evaluation
of the surface composition of the sun. We examine the nuclear input on the
formation of solar 8B [S17(0)] and demonstrate that it is still quite uncertain
due to ill known slope of the measured astrophysical cross section factor and
thus ill defined extrapolation to zero energy. This yields an additional
reasonably estimated uncertainty due to extrapolation of +0.0 -3.0 eV-b (+0%
-14%). Since a large discrepancy exists among measured as well as among
predicted slopes, the value of S17(0) is dependent on the choice of data and
theory used to extrapolate S17(0). This situation must be alleviated by new
measurement(s). The "world average" is driven by the Seattle result due to the
very small quoted uncertainty, which we however demonstrate it to be an
over-estimated accuracy. We propose more realistic error bars for the Seattle
results based on the published Seattle data.Comment: Fifth International Conferenceon Non-Accelerator New Physics, Dubna,
June 20-25, 2005. Work Supported by USDOE Grant No. DE-FG02-94ER4087