291 research outputs found

    Control system study Progress report, 8 Sep. - 7 Oct. 1965

    Get PDF
    Approximate mathematical solutions to space vehicle flight dynamic response control proble

    Model order reduction for nonlinear IC models

    Get PDF

    The importance of phytoplankton trait variability in spring bloom formation

    Get PDF
    About 60 years ago, the critical depth hypothesis was proposed to describe the occurrence of spring phytoplankton blooms and emphasized the role of stratification for the timing of onset. Since then, several alternative hypotheses appeared focusing on the role of grazing and mixing processes such as turbulent convection or wind activity. Surprisingly, the role of community composition—and thus the distribution of phytoplankton traits—for bloom formation has not been addressed. Here, we discuss how trait variability between competing species might influence phytoplankton growth during the onset of the spring bloom. We hypothesize that the bloom will only occur if there are species with a combination of traits fitting to the environmental conditions at the respective location and time. The basic traits for formation of the typical spring bloom are high growth rates and photoadaptation to low light conditions, but other traits such as nutrient kinetics and grazing resistance might also be important. We present concise ideas on how to test our theoretical considerations experimentally. Furthermore, we suggest that future models of phytoplankton blooms should include both water column dynamics and variability of phytoplankton traits to make realistic projections instead of treating the phytoplankton bloom as an aggregate community phenomenon

    Environmental variability in aquatic ecosystems: avenues for future multifactorial experiments

    Get PDF
    The relevance of considering environmental variability for understanding and predicting biological responses to environmental changes has resulted in a recent surge in variability-focused ecological research. However, integration of findings that emerge across studies and identification of remaining knowledge gaps in aquatic ecosystems remain critical. Here, we address these aspects by: (1) summarizing relevant terms of variability research including the components (characteristics) of variability and key interactions when considering multiple environmental factors; (2) identifying conceptual frameworks for understanding the consequences of environmental variability in single and multi-factorial scenarios; (3) highlighting challenges for bridging theoretical and experimental studies involving transitioning from simple to more complex scenarios; (4) proposing improved approaches to overcome current mismatches between theoretical predictions and experimental observations; and (5) providing a guide for designing integrated experiments across multiple scales, degrees of control, and complexity in light of their specific strengths and limitations

    A small scale remote cooling system for a superconducting cyclotron magnet

    Get PDF
    Through a technology transfer program CERN is involved in the R&D of a compact superconducting cyclotron for future clinical radioisotope production, a project led by the Spanish research institute CIEMAT. For the remote cooling of the LTc superconducting magnet operating at 4.5 K, CERN has designed a small scale refrigeration system, the Cryogenic Supply System (CSS). This refrigeration system consists of a commercial two-stage 1.5 W @ 4.2 K GM cryocooler and a separate forced flow circuit. The forced flow circuit extracts the cooling power of the first and the second stage cold tips, respectively. Both units are installed in a common vacuum vessel and, at the final configuration, a low loss transfer line will provide the link to the magnet cryostat for the cooling of the thermal shield with helium at 40 K and the two superconducting coils with two-phase helium at 4.5 K. Currently the CSS is in the testing phase at CERN in stand-alone mode without the magnet and the transfer line. We have added a "validation unit" housed in the vacuum vessel of the CSS representing the thermo-hydraulic part of the cyclotron magnet. It is equipped with electrical heaters which allow the simulation of the thermal loads of the magnet cryostat. A cooling power of 1.4 W at 4.5 K and 25 W at the thermal shield temperature level has been measured. The data produced confirm the design principle of the CSS which could be validated

    Ellipsometry with an undetermined polarization state

    Get PDF
    We show that, under the right conditions, one can make highly accurate polarization-based measurements without knowing the absolute polarization state of the probing light field. It is shown that light, passed through a randomly varying birefringent material has a well-defined orbit on the Poincare sphere, which we term a generalized polarization state, that is preserved. Changes to the generalized polarization state can then be used in place of the absolute polarization states that make up the generalized state, to measure the change in polarization due to a sample under investigation. We illustrate the usefulness of this analysis approach by demonstrating fiber-based ellipsometry, where the polarization state of the probe light is unknown, and, yet, the ellipsometric angles of the investigated sample (Ψ\Psi and Δ\Delta) are obtained with an accuracy comparable to that of conventional ellipsometry instruments by measuring changes to the generalized polarization state.Comment: 6 pages, 4 figures, 1 tabl
    corecore