
 

Proper orthogonal decomposition model order reduction of
nonlinear IC models
Citation for published version (APA):
Verhoeven, A., Striebel, M., Rommes, J., Maten, ter, E. J. W., & Bechtold, T. (2008). Proper orthogonal
decomposition model order reduction of nonlinear IC models. (CASA-report; Vol. 0833). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/7f88ccb3-2f2d-4032-8a98-784d841cae11


Proper Orthogonal Decomposition Model
Order Reduction of nonlinear IC models

A. Verhoeven1, M. Striebel2, J. Rommes3, E.J.W. ter Maten134, and
T. Bechtold3

1 Eindhoven University of Technology, The Netherlands,
Arie.Verhoeven@na-net.ornl.gov

2 Technische Universität Chemnitz, Germany, Michael.Striebel@nxp.com
3 NXP Semiconductors, Eindhoven, The Netherlands, Jan.ter.Maten@nxp.com,
Joost.Rommes@nxp.com, Tamara.Bechtold@nxp.com

4 Corresponding author

Summary. We demonstrate Model Order Reduction for a nonlinear system of
differential-algebraic equations of a diode chain by Proper Orthogonal Decompo-
sition with Adapted Missing Point Estimation. The collected time snapshots also
allow for an efficient impression of the sensitivity of objective functions.

1 Introduction

Future simulation for nanoelectronics requires that circuit equations can be
coupled to electromagnetics, to semiconductor equations, and to heat trans-
fer. The consequence is that one has to deal with large systems. Model Order
Reduction (MOR) is a means to speed up simulation of large systems. Ex-
isting MOR techniques mostly apply to linear problems and even then they
have to be generalized to become applicable to a resulting system of (Partial)
Differential-Algebraic Equations (DAEs, PDAES). To make MOR applicable
to industrial applications one has to address nonlinearity and parameteriza-
tion. Here we consider Proper Orthogonal Decomposition (POD) to reduce
the system size. An adaption is presented to also reduce the complexity in
evaluating functions and Jacobian-matrices.
The problem of reducing nonlinear systems can be described as follows.
Given a, possibly large-scale, nonlinear time-invariant dynamical system
Σ = (g, f ,h,x,u,y, t)

Σ =

{
dg(x(t))

dt
= f(x(t),u(t))

y(t) = h(x,u)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p, f(x(t),u(t)),g(x(t)) ∈ R

n,

h(x(t),u(t)) ∈ R
p, find a reduced model Σ̃ = (g̃, f̃ , h̃, x̃,u, ỹ, t)
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Σ̃ =

{
dg̃(x̃(t))

dt
= f̃(x̃(t),u(t))

ỹ(t) = h̃(x̃,u)

where x̃(t) ∈ R
r, u(t) ∈ R

m, ỹ(t) ∈ R
p, f̃(x̃(t),u(t)), g̃(x̃(t)) ∈ R

r,
h̃(x̃(t),u(t)) ∈ R

p, such that ỹ(t) can be computed in much less time than
y(t) and the approximation error y(t) − ỹ(t) is small.
In the context of circuit simulation the dynamical systems we are dealing
with are circuit blocks or subcircuits. Connection to and communication with
a block’s environment is done via its terminals, i.e. external nodes. Therefore,
we can assume that the currents or voltages are always injected linearly into
the circuit under consideration. A similar reasoning applies for the determi-
nation of the output signal y(t), which is also assumed to be not explicitly
dependent on the input u(t). Hence, in the remainder of this document, we
assume the dynamical systems to be of the form

Σ =

{
dg(x(t))

dt
= f(x(t)) + Bu(t)

y(t) = CT x

where B ∈ R
n×m and C ∈ R

n×p.
The two best-known methods for reduction of nonlinear systems are Proper
Orthogonal Decomposition (POD), and Trajectory PieceWise-Linear tech-
niques (TPWL) [4, 7, 6] (and references cited there).

2 Proper Orthogonal Decomposition (POD)

Proper Orthogonal Decomposition extends the Petrov-Galerkin projection
based methods that are used for linear systems to nonlinear system. By choos-
ing a suitable V ∈ R

n×r and a test matrix W ∈ R
n×r, where W and V are

biorthonormal, i.e., WT V = Ir×r, r ≤ n, the reduced system is given by

{
WT dg(Vx̃(t))

dt
= WT f(Vx̃(t)) + (WT B)u(t)

ỹ(t) = (CT V)x̃

Similar to linear model order reduction, the idea is that V captures the dom-
inant dynamics, i.e., the states of the original system are approximated well
by Vx̃ ≈ x. The test matrix W is chosen such that the Petrov-Galerkin con-

dition r = dg(Vx̃(t))
dt

− f(x̃(t)) −Bu(t) ⊥ W is met.
POD constructs the matrix V as follows. A time domain simulation of the
complete system is done and snapshots of the states at suitably chosen times
ti are collected in the state matrix X

X = [x(t0), x(t1), x(t2), · · ·x(tN−1)] ∈ R
n×N ,

where N is the number of time points ti. To extract the subspace that repre-
sents that dominant dynamics, the singular value decomposition of X is com-
puted X = UΣT where U ∈ R

n×n, Σ = [diag(σ1, . . . , σn) 0n×(N−n)] ∈ R
n×N
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(if N > n), and T ∈ R
N×N . Let the singular values σ1 ≥ σ2 · · ·σr � σr+1 >

· · · > σn be ordered in decreasing magnitude. POD chooses the matrix V

to have as its columns the left singular vectors corresponding to the r � n

largest singular values

V = [u1, u2, · · · ,ur] ∈ R
n×r.

The number k of vectors to choose can depend on a tolerance based criterion
like σk+1 < ε, or on the relative difference between σk and σk+1. The test
matrix W is taken as W = V, i.e., the residual is orthogonal to the reduced
state space.
We stress that the reduction obtained from POD and similar projection based
methods is solely in the number of states: r for the reduced systems vs. n for
the original system and r � n. However, the costs for evaluating nonlinear
terms such as WT f(Vx̃(t)) (and associated Jacobian-matrices) will be larger
than for the original system. Hence with respect to simulation times no re-
duction may be obtained unless additional measures are taken.

3 Missing Point Estimation/Adapted POD

We will present some results computed with the Missing Point Analysis/Adap-
ted POD approach described in [3, 4, 5]. We reflect the basic idea with the
case of a simple ODE

d

dt
x = f(x),

of dimension n with nonlinear right hand side f : R
n → R

n. The singular
value decomposition X = UΣVT of a matrix X ∈ R

n×N of N snapshots
is computed, giving n singular values σ1 ≥ σ2 ≥ · · · ≥ σn. The orthogonal
matrix L = U · diag(σ1, . . . , σn) ∈ R

n×n is introduced, with its columns
l1, . . . , ln spanning the complete space R

n. Hence, one can change to the new
basis, i.e., x = Ly and apply a Galerkin-like projection to the system

LT d

dt
(Ly) = LT f(Ly). (1)

Strictly speaking we do not apply Galerkin projection as the columns of L are
orthogonal, but not orthonormal.
Classical POD reduction acts on x = Ly in the sense that the expansion of
x in the basis l1, . . . , ln where (l1, . . . , ln) = L = (σ1 · v1, . . . , σn · vn) with
(v1, . . . ,vn) = U is truncated with respect to the magnitude of the singular
values σ1, . . . , σn:

x = Ly = (σ1v1) · y1 + · · · + (σrvr) · yr + (σr+1vr+1) · yr+1 + · · · + (σnvn) · yn

≈ (σ1v1) · y1 + · · · + (σrvr) · yr + 0 · yr+1 + 0 · yn

= (l1, . . . , lr, 0, . . . , 0) · y

= (LPT
r Pr) · y, with Pr =

(
Ir×r 0r×(n−r)

)
∈ {0, 1}r×n

= (LPT
r ) · (Pry) = (LPT

r ) · zr with zr = (y1, . . . , yr)
T ∈ R

r
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where r usually is chosen in such a way that σr+1 < TOL or σr+1 � σr.
This procedure can also be interpreted as keeping the r most “dominant”
columns of L and neglecting the rest, where a column’s norm is taken as a
criterion. That means, L is approximated by

L ≈ LPT
r Pr, with Pr ∈ {0, 1}r×n. (2)

where Pr =
(
Ir×r 0r×(n−r)

)
selects these columns. By construction of L =

U ·diag(σ1, . . . , σn), where UT U = In×n, we have ‖vi‖2 = σi for i = 1, . . . , n.
In this respect the r most dominant columns are therefore l1, . . . , lr.
In the adapted POD presented in [4] this perception is carried over to the
transposed LT . That means, one selects, again based on the norms, the g ∈ N

most dominant columns {̃lµ1
, . . . , l̃µg

} of LT = (̃l1, . . . , l̃n) and neglects the
rest:

LT ≈ LT PT
g Pg , with Pg ∈ {0, 1}g×n. (3)

First, these approximations to L and LT from (2) and (3), respectively, are
inserted into (1):

LT PT
g Pg

d

dt
(LPT

r Pry) = LT PT
g Pgf(LPT

r Pry) (4)

From (2) and (3) it follows that

LT ≈ PT
r PrL

T PT
g Pg ,

and multiplying with Pr (consider PrP
T
r = Ir×r), the system (4) turns into

PrL
T PT

g Pg

d

dt
(LPT

r Pry) = PrL
T PT

g Pgf(LPT
r Pry)

As LPT
r = (σ1v1, . . . , σrvr) = UrΣr (for Ur = (v1, . . . ,vr), Σr = diag(σ1, . . .-

. . . , σr)) we get

ΣrU
T
r PT

g

d

dt
[PgUrΣrPry] = ΣrU

T
r PT

g Pgf(UrΣrPry), Ly = x.

The above equation states a system of dimension r for y ∈ R
n. Therefore,

we introduce the reduced state vector yr = ΣrPry ∈ R
r from which we can

approximately reconstruct the coefficients of the full state in the basis spanned
by the columns of L by y ≈ PT

r Σ−1
r yr . This in turn lets us approximate the

full state in the original basis x ≈ Uryr, because x = Ly ≈ LPT
r Σ−1

r yr =
UrΣrΣ

−1
r yr . This part is consistent with the classical POD.

In addition to the reduction in the state space the adapted POD downsizes
f(·) by considering that the term Pgf(·) corresponds to just including the g

components fµ1
(·), . . . , fµg

(·) of f(·) = (f1(·), . . . , fr(·))
T . Hence, it suffices to

evaluate the g-dimensional function

f̄ : R
n → R

g : x 7→ (fµ1
(x), . . . , fµg

(x))T .
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After scaling with Σ−1
r the reduced system for the reduced state vector yr ∈

R
r becomes

UT
r PT

g

d

dt
[PgUryr] = UT

r PT
g f̄ (Uryr), x = Uryr (5)

For the general case of having not an ODE (1) but a DAE

d

dt
g(x) = f(x) + Bv

to deal with, one gets a reduced problem

UT
r PT

g

d

dt
ḡ(Uryr) = UT

r PT
g f̄ (Uryr) + UT

r Bv. (6)

with ḡ : R
n → R

g : x 7→ (gµ1
(x), . . . , gµg

(x))T .

We end this section with the observation that the collected time snapshots
for POD also allow for an efficient first impression of the sensitivity of several
objective functions (like consumed power) even in the case of many parameters
[2].

4 POD Testcase: Diodechain

We consider the diode chain model shown in Fig. 1 (with the parameters
Is, VT , R, C). Here the diode functionality is modelled by the current function
g(Va, Vb) and the input function by Uin(109t), for t ≤ 70ns, see [3, 4, 5],

g(Va, Vb) =

{
Is(e

Va−Vb
VT − 1) if Va − Vb > 0.5
0 otherwise

Uin(τ ) =





20 if τ ≤ 10
170 − 15τ if 10 < τ ≤ 11

5 if τ > 11

The state of the diode chain model consists of 302 elements but there is a lot
of redundancy. The numerical solution (nodal voltage in each node) on the
time interval [0, 70 ns] is computed by the Euler Backward method with fixed
stepsizes of 0.1 ns. The full system was run in 42.01s. Classic POD needed
35.51s. The POD with Adapted MPE (reducing the state space to r=30 and
downsizing evaluations to g=35), only required 5.12s. No visible error can be
seen in the approximative results (Fig 2 (left)).
If the input changes to 7.5 cos( 2πt

60·10−9 ) + 12.5 this impression is confirmed
(full system 40.22s, Classic POD even 45.34s, POD with Adapted POD 6.28s;
Fig 2 (right)). This makes POD ca 5 times slower then TPWL, but much
more accurate and more robust [3]. If we further increase the amplitude of
the cosine to 9.5 POD is not able to properly recover the regions with higher
amplitudes (but neither is TPWL) [5].
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Fig. 1. Schematic of diode chain.
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Fig. 2. Left: identical input; Right: changed input
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