190 research outputs found

    Quantum box energies as a route to the ground state levels of self-assembled InAs pyramidal dots

    Get PDF
    A theoretical investigation of the ground state electronic structure of InAs/GaAs quantum confined structures is presented. Energy levels of cuboids and pyramidal shaped dots are calculated using a single-band, constant-confining-potential model that in former applications has proved to reproduce well both the predictions of very sophisticated treatments and several features of many experimental photoluminescence spectra. A connection rule between their ground state energies is found which allows the calculation of the energy levels of pyramidal dots using those of cuboids of suitably chosen dimensions, whose solution requires considerably less computational effort. The purpose of this work is to provide experimentalists with a versatile and simple method to analyze their spectra. As an example, this rule is then applied to successfully reproduce the position of the ground state transition peaks of some experimental photoluminescence spectra of self-assembled pyramidal dots. Furthermore the rule is used to predict the dimensions of a pyramidal dot, starting from the knowledge of the ground state transition energy and an estimate for the aspect ratio Q. © 2000 American Institute of Physics

    Stability of strained heteroepitaxial systems in (1+1) dimensions

    Full text link
    We present a simple analytical model for the determination of the stable phases of strained heteroepitaxial systems in (1+1) dimensions. In order for this model to be consistent with a subsequent dynamic treatment, all expressions are adjusted to an atomistic Lennard-Jones system. Good agreement is obtained when the total energy is assumed to consist of two contributions: the surface energy and the elastic energy. As a result, we determine the stable phases as a function of the main ``control parameters'' (binding energies, coverage and lattice mismatch). We find that there exists no set of parameters leading to an array of islands as a stable configuration. We however show that a slight modification of the model can lead to the formation of stable arrays of islands.Comment: 11 pages, 14 figures, submitted to Physical Review

    Effect of the lattice misfit on the equilibrium shape of strained islands in Volmer-Weber growth

    Full text link
    We have studied the effect of the misfit on the equilibrium shape of three-dimensional pyramidal islands grown on a foreign substrate in the case of incomplete wetting (Volmer-Weber mode of growth). We have found that tensile islands have smaller aspect ratios compared with compressed islands owing to its better adhesion to the substrate. The average strains of consecutive layers decrease faster with thickness in compressed than in tensile islands. The strains decrease rapidly with thickness, with the consequence that above a certain height, the upper layers of the pyramid become practically unstrained and does not contribute to a further reduction in the upper base. As a result, the truncated pyramids are not expected to transform into full pyramids. Our results are in good agreement with experimental observations in different systems.Comment: 6 pages, 7 figures. Accepted version, minor change

    Coherent Stranski-Krastanov growth in 1+1 dimensions with anharmonic interactions: An equilibrium study

    Get PDF
    The formation of coherently strained three-dimensional islands on top of the wetting layer in Stranski-Krastanov mode of growth is considered in a model in 1+1 dimensions accounting for the anharmonicity and non-convexity of the real interatomic forces. It is shown that coherent 3D islands can be expected to form in compressed rather than in expanded overlayers beyond a critical lattice misfit. In the latter case the classical Stranski-Krastanov growth is expected to occur because the misfit dislocations can become energetically favored at smaller island sizes. The thermodynamic reason for coherent 3D islanding is the incomplete wetting owing to the weaker adhesion of the edge atoms. Monolayer height islands with a critical size appear as necessary precursors of the 3D islands. The latter explains the experimentally observed narrow size distribution of the 3D islands. The 2D-3D transformation takes place by consecutive rearrangements of mono- to bilayer, bi- to trilayer islands, etc., after exceeding the corresponding critical sizes. The rearrangements are initiated by nucleation events each next one requiring to overcome a lower energetic barrier. The model is in good qualitative agreement with available experimental observations.Comment: 12 pages text, 15 figures, Accepted in Phys.Rev.B, Vol.61, No2

    Communication: Non-monotonic supersaturation dependence of the nucleus size of crystals with anisotropically interacting molecules.

    Get PDF
    We study the nucleation of model two-dimensional crystals formed from anisotropically interacting molecules using kinetic Monte Carlo simulations and the forward flux sampling algorithm. The growth probability P(n) of a cluster of n molecules is measured while the supersaturation s and interaction anisotropy of the molecules are varied, in order to gain insight into the nucleation mechanism. It is found that with increasing degree of interaction anisotropy the nucleus size (defined as the cluster size at which P(n) = 0.5) can increase with increasing s, with sharp jumps at certain s values. Analysis of the cluster shape reveals that nucleation in the system studied is of a non-standard form, in that it embodies elements of both the classical nucleation theory and the density functional theory frameworks

    Second-layer nucleation in coherent Stranski-Krastanov growth of quantum dots

    Full text link
    We have studied the monolayer-bilayer transformation in the case of the coherent Stranski-Krastanov growth. We have found that the energy of formation of a second layer nucleus is largest at the center of the first-layer island and smallest on its corners. Thus nucleation is expected to take place at the corners (or the edges) rather than at the center of the islands as in the case of homoepitaxy. The critical nuclei have one atom in addition to a compact shape, which is either a square of i*i or a rectangle of i*(i-1) atoms, with i>1 an integer. When the edge of the initial monolayer island is much larger than the critical nucleus size, the latter is always a rectangle plus an additional atom, adsorbed at the longer edge, which gives rise to a new atomic row in order to transform the rectangle into the equilibrium square shape.Comment: 6 pages, 4 figures. Accepted version, minor change

    Adsorption of Indium on a InAs wetting layer deposited on the GaAs(001) surface

    Full text link
    In this work we perform a first-principles study of the adsorption properties of an In adatom deposited on 1.75 monolayers (ML) InAs, forming a wetting layer on GaAs(001)(001) with the α2(2×4)\alpha_2 (2\times4) or β2(2×4)\beta_2 (2\times4) reconstruction. The structural properties of these reconstructions have been studied: we determine the equilibrium geometry of the surfaces and their stability for various growth conditions. We have then carried out a detailed study of the potential energy surface (PES) for an In adsorbate, finding the minima and the saddle points. The main characteristics of the PES and the bonding configurations of the In adatom on the surface are analyzed by comparing with analogous studies reported in the literature, trying to extract the effects due to: (i) the compressive strain to which the InAs adlayer is subjected, (ii) the particular surface reconstruction, and (iii) the wetting layer composition. We found that, in general, stable adsorption sites are located at: (i) locations besides the As in-dimers, (ii) positions bridging two As in-dimers, (iii) between two adjacent ad-dimers (only in β2\beta_2), and (iv) locations bridging two As ad-dimers. We find also other shallower adsorption sites which are more reconstruction specific due to the lower symmetry of the α2\alpha_2 reconstruction compared to the β2\beta_2 reconstruction

    Properties of the electron-doped infinite-layer superconductor Sr1x_{1-x}Lax_{x}CuO2_{2} epitaxially grown by pulsed laser deposition

    Full text link
    Thin films of the electron-doped infinite-layer cuprate superconductor Sr1x_{1-x}Lax_xCuO2_2 (SLCO) with doping x0.15x \approx 0.15 were grown by means of pulsed laser deposition. (001)-oriented KTaO3_3 and SrTiO3_3 single crystals were used as substrates. In case of SrTiO3_3, a BaTiO3_3 thin film was deposited prior to SLCO, acting as buffer layer providing tensile strain to the SLCO film. To induce superconductivity, the as-grown films were annealed under reducing conditions, which will be described in detail. The films were characterized by reflection high-energy electron diffraction, atomic force microscopy, x-ray diffraction, Rutherford backscattering spectroscopy, and electric transport measurements at temperatures down to T=4.2T = 4.2\,K. We discuss in detail the influence of different process parameters on the final film properties.Comment: 16 pages, 14 figure

    Critical Strain Region Evaluation of Self-Assembled Semiconductor Quantum Dots

    Get PDF
    A novel peak finding method to map the strain from high resolution transmission electron micrographs, known as the Peak Pairs method, has been applied to In(Ga) As/AlGaAs quantum dot (QD) samples, which present stacking faults emerging from the QD edges. Moreover, strain distribution has been simulated by the finite element method applying the elastic theory on a 3D QD model. The agreement existing between determined and simulated strain values reveals that these techniques are consistent enough to qualitatively characterize the strain distribution of nanostructured materials. The correct application of both methods allows the localization of critical strain zones in semiconductor QDs, predicting the nucleation of defects, and being a very useful tool for the design of semiconductor device

    Formation and Thermal Stability of sub-10 nm Carbon Templates on Si(100)

    Full text link
    We report a lithographic process for creating high-resolution (<10 nm) carbon templates on Si(100). A scanning electron microscope, operating under low vacuum (10E-6 mbar), produces a carbon-containing deposit ("contamination resist") on the silicon surface via electron-stimulated dissociation of ambient hydrocarbons, water and other adsorbed molecules. Subsequent annealing at temperatures up to 1320 K in ultra-high vacuum removes SiO2 and other contaminants, with no observable change in dot shape. The annealed structures are compatible with subsequent growth of semiconductors and complex oxides. Carbon dots with diameter as low as 3.5 nm are obtained with a 200 us electron-beam exposure time.Comment: 13 pages, 4 figure
    corecore