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Non-monotonic supersaturation dependence of the nucleus size of crystals with

anisotropically interacting molecules

R.J. Bingham,1 L.G. Rizzi,1 R. Cabriolu,2 and S. Auer1

1School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
2Dept. of Civil and Environmental Engineering,

George Washington University, Washington DC, 20052, USA

We study the nucleation of model two-dimensional crystals in order to gain insight into the effect
of anisotropic interactions between molecules on the nucleation mechanism. With the aid of kinetic
Monte Carlo (kMC) simulations and the forward flux sampling algorithm, we determine the growth
probability P (n) of a cluster of n molecules as a function of the supersaturation s. It is found
that with increasing degree of interaction anisotropy the nucleus size (defined as the cluster size at
which P (n) = 0.5) can increase with increasing s, with sharp jumps at certain s values. Analysis
of the cluster shape reveals that nucleation in the system studied is of a non-standard form, in
that it embodies elements of both the classical nucleation theory and the density functional theory
frameworks.

PACS numbers: 81.10.Aj,87.15.A-,64.60.qe

The nucleation of crystals from molecules that inter-
act via anisotropic potentials has been widely researched,
not only because of the fundamental significance [1–5],
but also due to the variety of applications, with promi-
nent research areas including; (i) the growth of atomic
metal clusters on substrates with anisotropic character
[6–11], (ii) the formation of crystals by the interactions
of nano-patterned materials [12–20] and (iii) the nucle-
ation of amyloid fibrils, where the anisotropy is caused
by strongly directional hydrogen bonds [21–26].

The propensity for a macroscopic crystal to nucleate
can be characterized by the nucleus size, n∗, (also know
as the critical nucleus size) the size a growing cluster
must surpass to be more likely to grow than dissolve.
According to classical nucleation theory (CNT) [27] in a
single component system, there exists a well defined n∗ at
the cluster size which requires maximal work for its for-
mation. Recent computational and theoretical research
has shown that introducing anisotropy into the interac-
tions between molecules creates ambiguity, changing the
well defined nucleus size to a distribution of nucleus sizes
[23, 24]. The resultant change to the nucleation mecha-
nism has been shown to affect the solubility of cluster
[22], crystal nucleation rate [28] and nucleation path-
way [3]. Here we directly measure the distribution of
nucleus sizes, characterize the dependence on the inter-
action anisotropy and supersaturation and relate this to
the nucleus shape to explain the peculiar behavior of n∗.

Our computations use the Kossel-Stranski model,
where molecules are schematized as blocks arranged in a
two dimensional lattice with square symmetry [29]. The
lattice is a convenience that allows the easy specification
of both the cluster surface configuration and the bonding
arrangements and strengths. The model also has one-
to-one correspondence with the Ising model [30]. Only
nearest neighbor interactions in the x and y directions
are considered. The bond energies are defined by dimen-

sionless parameters given by ψi = Ei/2kBT (i = x, y),
where Ei is the interaction energy between molecules in
the x or y direction and kB and T have their conven-
tional meanings. We vary the strength of the interaction
in the x direction while fixing ψy = 1 to study the effect
of anisotropic interactions, which is characterized by the
ratio ξ = ψx/ψy.
To investigate the response of n∗ to the introduction of

anisotropic interactions, we employ kinetic Monte Carlo
(kMC) to simulate anisotropies ξ = 1, 3, 5, 8 and 10 and
a range of supersaturations, s, defined by s = ∆µ/kBT ,
where ∆µ is the difference in chemical potential between
the bulk old and new phases. As the simulation pro-
gresses, the number of occurrences of each cluster size
is recorded in order to generate the growth probability,
P (n), as a function of cluster size n, given by

P (n) = Nmacro/N (n) , n = 2 . . . Nmacro (1)

where N (n) is the number of first occurrences of cluster
size n and Nmacro is the number of occurrences of the
macroscopic crystal [31]. In earlier work [28], the nucle-
ation rate was calculated by measuring the probability
that a dimer will grow to macroscopic size. In order to
measure the full P (n) curve and hence the nucleus size
at low s values, the direct forward flux sampling (FFS)
algorithm is used [32]. To implement the FFS algorithm
we split the range of cluster sizes n into windows of size
∆n creating interfaces at nk = 2 + k∆n, where k takes
integer values. This divides the simulation into a number
of shorter simulations, where Nr replicas of the system
attempt to reach the interface at nk+1 starting from con-
figurations with n = nk. It was found that ∆n = 20
and 1000 successful attempts reproduces earlier kMC re-
sults [28] while saving considerable computation time. In
total, around 320 simulations were made taking Nr be-
tween 1200 and 1× 1013 to cover different combinations
of ξ and s.
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FIG. 1: (Color online) Growth probability P (n) against clus-
ter size n for anisotropies (a) ξ = 3 and (b) ξ = 8. The
supersaturations are labeled within the figure. A guide for
the eye is drawn at P (n) = 0.5, the probability that defines
n∗. The trend in P (n) with changes in supersaturation be-
comes less predictable as the anisotropy increases.

Figure 1 shows representative P (n) curves for
two anisotropies and various supersaturations. For
anisotropy ξ = 3 (Fig. 1(a)) the probabilities P (n) have
similar behavior to the isotropic (ξ = 1) case, in which
reducing the supersaturation shifts the curve to the right
and increases the width. At higher anisotropy ξ = 8
(Fig. 1(b)) the P (n) curves no longer show a consistent
trend instead ‘jumping’ as supersaturation is lowered. All
the P (n) curves show logistic-type growth but at higher
anisotropy the change in shape with variation in s ap-
pears less uniform.

A broader view of the changes in nucleation probabil-
ity is required, so we use the growth probability P (n) to
calculate the nucleus size n∗, commonly defined as the
cluster size at which P (n) = 0.5. Figure 2 shows the
supersaturation dependence of the nucleus size n∗. At
low anisotropies (ξ = 1, 3) n∗ decays monotonically with
s as predicted by CNT, however at higher anisotropy
(ξ = 5, 8, 10) the decay becomes non-monotonic, n∗ dis-
playing peaks at ‘transition’ s values above which the
nucleus size shows a dramatic decline. This peculiar be-
havior is a departure from the classical behavior pre-
dicted by CNT. The transition values correspond with
those predicted by Kashchiev et al. [22, 24] for jumps
in the solubility of amyloid fibril, where each supersatu-
ration region is defined by the number of rows a cluster
requires in order to grow irreversibly. A general formula
for the transition supersaturations can be derived [22];
Si = 2ψy/i where i is the number of rows in a cluster,

FIG. 2: (Color online) Nucleus size n∗ against the su-
persaturation s, for various interaction anisotropies. As
the anisotropy is increased the decay in n∗ becomes non-
monotonic, in contrast to the predictions of CNT. The dotted
lines represent ‘transition’ supersaturations, as predicted by
the theory of Kashchiev et al. [22, 24] at s = 2, 1, 2/3, 1/2.

a row being defined as growth in the strong bonding di-
rection, x. Above each Si a cluster with i rows can grow
irreversibly, hence above S1 = 2ψy/1 = 2 all clusters
with one row can grow to macroscopic size, which de-
fines this region as the metanucleation range, where each
single molecule acts as a nucleus and hence nucleation
is instantaneous. This is independent of anisotropy, as
reflected in Fig. 2, where all anisotropies have very small
nucleus sizes s > 2. If 1 < s < 2 a cluster needs two rows
to grow to macroscopic size, therefore the nucleus must
consist of one row, with an additional molecule start-
ing a new row. The appearance of a second row can
occur at a variety of lengths of the initial row, which
leads to a distribution of nucleus sizes. Similarly when
2/3 < s < 1 a three row cluster is required, hence the nu-
cleus is two rows with an additional molecule starting a
third row. Each descending supersaturation interval adds
an additional row to this requirement. A similar nucle-
ation mechanism has recently been observed in oligomer
formation experiments of amyloid fibrils [33].

Based on the correspondence between our results and
the theoretical model [24], additional simulations were
performed to investigate the causes of the non-monotonic
decay in n∗ vs s. The shape of the cluster was recorded
and analyzed at each size n for different combinations of
s and ξ and again averages and distributions were eval-
uated using 1000 completed trajectories. Fig. 3(a) shows
the average number of rows in a cluster, 〈i〉, against the
cluster size n. While the anisotropy is varied from ξ = 1
to 8, the supersaturation is held fixed at s = 1.7, a point
where there is significant variation in n∗ with changes in
ξ. For ξ = 1 and 3 the average number of rows grows un-
bounded but at higher anisotropy (ξ = 5 and 8) the rate
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FIG. 3: (Color online) (a) The average number of rows 〈i〉 in
a cluster against cluster size n for various anisotropies. The
supersaturation is held fixed at s = 1.7. A row is defined as
molecules aligned along the strong bonding direction. (b) The
shape factor λ against cluster size n at various supersatura-
tions. The anisotropy is now fixed at ξ = 8. Lines are added
to indicate the shape factors of ideal one-row and two-row
clusters. (c) Histogram of the transition size mt of the nuclei,
from the same data used to generate (a). The transition size
is the length of the first row upon formation of the second
row. (d) Histogram of the transition size mt of the nuclei,
using the same data used to generate (b).

of row increase has dramatically slowed and has stopped
at 〈i〉 = 2 when ξ = 8, indicating that the clusters are
elongated and in agreement with the model [24].

To quantify the shape of the clusters during the nu-
cleation process, the shape factor λ = n/i2, is intro-
duced. Greater λ values correspond to elongated clus-
ter shapes. Fig. 3(b) shows how the shape factor reflects
the changing shape of a nucleating cluster, where the
anisotropy is fixed at ξ = 8 and the supersaturation is
varied. In the metanucleation region (s > 2), λ = n
and the cluster appears as a single row, adding molecules
at the cluster ends. For supersaturations below the nu-
cleation/metanucleation boundary, s < 2, λ initially in-
creases rapidly before transitioning to a slower, but still
linear rate of increase, which illustrates that the clus-
ter initially grows as a single row, before transforming
to a two row cluster. The cluster size at which λ passes
through a stationary point before settling on the line indi-
cating a two row cluster increases as s→ 2 which results
in both the increase and the peak in n∗ seen in Fig. 2.

In order to determine the distribution of nucleus sizes
we record in histograms the frequency f of transition
sizes mt, defined by the length of the first row upon for-
mation of the second row. First we held the supersatura-
tion fixed at s = 1.7 and, as shown in Fig. 3(c), the mean
transition size and the width of the distribution increases
as the anisotropy is increased. As shown above, in this
supersaturation range (1 < s < 2) a nucleus consists of a

single row with an additional molecule in a second row,
hence measuring the transition size is in effect measur-
ing the size at which a cluster becomes a nucleus. Now
we consider the distribution of frequencies of mt across
the transition between different supersaturations ranges.
Figure 3(d) records the frequency of transition sizes mt

using the same data as Fig 3(b). The transition sizes re-
flect the trend in n∗ shown in Fig. 2 as the mean value of
the frequency distributions of mt increase as s increases.
At s = 1.7 the maximum mt occurs at ∼ 20 molecules,
which correlates with the cluster size at which the ξ = 8
curve in Fig. 3(a) reaches its maximum value 〈i〉 = 2.
When the supersaturation is increased to s = 1.9 the tail
of the distribution has increased, until at s = 2.0 where
the distribution appears flat across the range of transi-
tions sizes from mt = 1 to 180. The nucleating clusters
at s = 2.1, 2.3 very rarely undergo a transition to a two
row cluster (as seen in Fig. 3(b)) and therefore do not
appear in this plot.

The observed behavior of n∗ can be rationalized within
the context of the stochastic growth modeled by our sim-
ulations, where the likelihood of molecule addition de-
pends upon the relative changes in the nucleation work.
Adding a molecule in the x direction, creating two broken
weak bonds in the y direction costs 2ψy − s, while cre-
ating a new row by adding a molecule in the y direction
creates two broken strong bonds, which costs 2ψx − s.
This energy cost increases with the anisotropy ratio ξ.
When these terms are comparable at low anisotropy, the
cluster is likely to grow in an isotropic fashion. At high
ξ, the barrier to creating new rows is higher, so the clus-
ter is more likely to have reached large row lengths before
reaching the number of rows required to grow irreversibly.
This is reflected in both the widening mt distributions
(Fig. 3(c)) and the subsequent increase in n∗ (Fig. 2) with
increases in ξ. As s → S1 = 2 the work (2ψy − s) to ex-
tend a single row tends to zero, hence the transition size
will increase, as seen in Fig. 3(d) and this results in the
peaks in n∗ as s→ 2. When s < S2 = 1 a three row clus-
ter is required for irreversible growth, but as s → 1 the
work to extend a two row cluster tends to zero and hence
similar peaks in n∗ are observed. Similar relationships
can be shown for all supersaturation regions.

In summary, the presented analysis of the nucleus
shape and dependence on s and ξ reveals a clear picture
of the nucleation mechanism of crystals with anisotropic
molecular interactions. As the anisotropy is increased
the classical description (as used in CNT) breaks down
because the concept of a well-defined nucleus no longer
exists. From our shape analysis we find that; (i) At high
anisotropy the number of rows in a cluster saturates at
the height of a nucleus. (ii) The formation of the row
that achieves the nucleus height can occur at a range of
transition sizes, that increases both as ξ is increased and
as a transition supersaturation Si is approached from be-
low. (iii) The broadening range of transition sizes coupled
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with requirement of a minimum nucleus height leads to a
wide variety of nuclei, ultimately causing the peculiar be-
havior seen in the s dependence of n∗. It should be noted
however that the peaks in n∗ at Si resemble those of the
critical nucleus radius against system composition seen
in the density functional theory (DFT) description of nu-
cleation [34]. The DFT model describes nucleation in a
two-component continuous fluid, where as the difference
in composition approaches the spinodal value, the critical
nucleus radius tends to infinity, against the predictions
of classical theory. In our system the transition super-
saturations Si are spinodal values for the extension of
existing cluster rows, reinforcing this commonality. Nu-
cleation of crystals from molecules with anisotropic inter-
actions can therefore be seen to be a non-standard form
of nucleation, in that it displays decrease of n∗ with s of
CNT and the asymptotic spinodal n∗(s) behavior seen in
DFT, but cannot be entirely characterized by either of
these frameworks.
The subtleties of nucleation from anisotropically inter-

acting molecules has implications for both practical and
theoretical studies. In kinetic studies of amyloid fibrilla-
tion, the nucleus size is assumed to be a constant for use
as a parameter in rate equations [35]. We have shown
that this assumption is problematic, that in fact a wide
distribution of nucleus sizes are possible, especially near
transition supersaturations, where additional conforma-
tional factors could also play a role. In the experimental
studies of nucleation of amyloid fibrils, the anisotropy
arises from the disparity in bonding strengths between
neighboring peptides within each β sheet and those in
neighboring β sheets, which could be tuned by changing
the amino acid sequence within the peptides allowing for
the control of the fibril nucleus size and the macroscopic
fibril morphology.
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