60 research outputs found

    β-adrenergic modulation of oddball responses in humans

    Get PDF
    Detection of salient or motivationally significant stimuli is of adaptive importance. The neurophysiological correlates of this detection have been extensively studied in 'oddball' paradigms. Much theoretical data supports the role of noradrenergic systems in generating oddball responses. We combine psychopharmacology and functional neuroimaging to demonstrate modulation of neuronal responses to oddball nouns by the β-adrenergic antagonist propranolol. Critically, responses in regions implicated in oddball detection, namely right ventrolateral prefrontal cortex and temporoparietal junction (TPJ), were abolished by propranolol. Thus, oddball responses depend on modulatory adrenergic inputs, mediated via β-adrenergic receptors

    Prefrontal-occipitoparietal coupling underlies late latency human neuronal responses to emotion

    Get PDF
    Enhanced late positive potentials (LPPs) evoked by highly arousing unpleasant and pleasant stimuli have been consistently observed in event-related potential experiments in humans. Although the psychological factors modulating the LPP have been studied in detail, the neurobiological underpinnings of this response remain poorly understood. Current models suggest that the LPP is a product of both an automatic facilitation of perceptual activity, as well as postperceptual processing under cognitive control. Here we applied magnetoencephalography (MEG) and beamformer analysis combined with Granger causality measures to provide a mechanistic account for LPP generation that reconciles these two models. We demonstrate that the magnetic homolog of the LPP, mLPP, is localized within bilateral occipitoparietal and right prefrontal cortex. Critically, directed functional connectivity analysis between these brain regions, indexed by Granger causality, demonstrates stronger bidirectional influences between frontal and occipitoparietal cortex for high arousing emotional relative to low arousing neutral pictures. Thus, both bottom-up and top-down accounts of the late latency response to emotion derived from psychological studies can be explained by a reciprocal codependency between activity in prefrontal and occipitoparietal cortex

    A ventromedial prefrontal dysrhythmia in obsessive-compulsive disorder is attenuated by nucleus accumbens deep brain stimulation

    Get PDF
    Background: Obsessive-compulsive disorder (OCD) has consistently been linked to abnormal frontostriatal activity. The electrophysiological disruption in this circuit, however, remains to be characterized. Objective/hypothesis: The primary goal of this study was to investigate the neuronal synchronization in OCD patients. We predicted aberrant oscillatory activity in frontal regions compared to healthy control subjects, which would be alleviated by deep brain stimulation (DBS) of the nucleus accumbens (NAc). Methods: We compared scalp EEG recordings from nine patients with OCD treated with NAc-DBS with recordings from healthy controls, matched for age and gender. Within the patient group, EEG activity was compared with DBS turned off vs. stimulation at typical clinical settings (3.5 V, frequency of stimulation 130 Hz, pulse width 60 ms). In addition, intracranial EEG was recorded directly from depth macro electrodes in the NAc in four OCD patients. Results: Cross-frequency coupling between the phase of alpha/low beta oscillations and amplitude of high gamma was significantly increased over midline frontal and parietal electrodes in patients when stimulation was turned off, compared to controls. Critically, in patients, beta (16-25 Hz)-gamma (110-166 Hz) phase amplitude coupling source localized to the ventromedial prefrontal cortex, and was reduced when NAc-DBS was active. In contrast, intracranial EEG recordings showed no beta-gamma phase amplitude coupling. The contribution of non-sinusoidal beta waveforms to this coupling are reported. Conclusion: We reveal an increased beta-gamma phase amplitude coupling in fronto-central scalp sensors in patients suffering from OCD, compared to healthy controls, which may derive from ventromedial prefrontal regions implicated in OCD and is normalized by DBS of the nucleus accumbens. This aberrant cross-frequency coupling could represent a biomarker of OCD, as well as a target for novel therapeutic approaches. (C) 2021 The Authors. Published by Elsevier Inc.This work was supported by Project grants SAF2015-65982-R from the Spanish Ministry of Economy and Competitiveness to BS and PSI2014-58654-JIN to JGR, an FPI Predoctoral Fellowship (BES-2016-079470) to ST, and BIAL Foundation Grant 119/12 to BS. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (ERC-2018-COG 819814)

    Temporal dynamics of amygdala response to emotion- and action-relevance

    Get PDF
    It has been proposed that the human amygdala may not only encode the emotional value of sensory events, but more generally mediate the appraisal of their relevance for the individual's goals, including relevance for action or task-based needs. However, emotional and non-emotional/action-relevance might drive amygdala activity through distinct neural signals, and the relative timing of both kinds of responses remains undetermined. Here, we recorded intracranial event-related potentials (iERPs) from nine amygdalae of patients undergoing epilepsy surgery, while they performed variants of a Go/NoGo task with faces and abstract shapes, where emotion- and action-relevance were orthogonally manipulated. Our results revealed early amygdala responses to emotion facial expressions starting ~130ms after stimulus-onset. Importantly, the amygdala responded to action-relevance not only with face stimuli but also with abstract shapes (squares), and these relevance effects consistently occurred in later time-windows (starting ~220ms) for both faces and squares. A similar dissociation was observed in gamma activity. Furthermore, whereas emotional responses habituated over time, the action-relevance effect increased during the course of the experiment, suggesting progressive learning based on the task needs. Our results support the hypothesis that the human amygdala mediates a broader relevance appraisal function, with the processing of emotion-relevance preceding temporally that of action-relevance

    Action boosts episodic memory encoding in humans via engagement of a noradrenergic system

    Get PDF
    We are constantly interacting with our environment whilst we encode memories. However, how actions influence memory formation remains poorly understood. Goal-directed movement engages the locus coeruleus (LC), the main source of noradrenaline in the brain. Noradrenaline is also known to enhance episodic encoding, suggesting that action could improve memory via LC engagement. Here we demonstrate, across seven experiments, that action (Go-response) enhances episodic encoding for stimuli unrelated to the action itself, compared to action inhibition (NoGo). Functional magnetic resonance imaging, and pupil diameter as a proxy measure for LC-noradrenaline transmission, indicate increased encodingrelated LC activity during action. A final experiment, replicated in two independent samples, confirmed a novel prediction derived from these data that emotionally aversive stimuli, which recruit the noradrenergic system, modulate the mnemonic advantage conferred by Go-responses relative to neutral stimuli. We therefore provide converging evidence that action boosts episodic memory encoding via a noradrenergic mechanism

    HtrA, fatty acids, and membrane protein interplay in Chlamydia trachomatis to impact stress response and trigger early cellular exit

    Get PDF
    UNLABELLED: Chlamydia trachomatis is an intracellular bacterial pathogen that undergoes a biphasic developmental cycle, consisting of intracellular reticulate bodies and extracellular infectious elementary bodies. A conserved bacterial protease, HtrA, was shown previously to be essential for Chlamydia during the reticulate body phase, using a novel inhibitor (JO146). In this study, isolates selected for the survival of JO146 treatment were found to have polymorphisms in the acyl-acyl carrier protein synthetase gene (aasC). AasC encodes the enzyme responsible for activating fatty acids from the host cell or synthesis to be incorporated into lipid bilayers. The isolates had distinct lipidomes with varied fatty acid compositions. A reduction in the lipid compositions that HtrA prefers to bind to was detected, yet HtrA and MOMP (a key outer membrane protein) were present at higher levels in the variants. Reduced progeny production and an earlier cellular exit were observed. Transcriptome analysis identified that multiple genes were downregulated in the variants especially stress and DNA processing factors. Here, we have shown that the fatty acid composition of chlamydial lipids, HtrA, and membrane proteins interplay and, when disrupted, impact chlamydial stress response that could trigger early cellular exit.IMPORTANCE: Chlamydia trachomatis is an important obligate intracellular pathogen that has a unique biphasic developmental cycle. HtrA is an essential stress or virulence protease in many bacteria, with many different functions. Previously, we demonstrated that HtrA is critical for Chlamydia using a novel inhibitor. In the present study, we characterized genetic variants of Chlamydia trachomatis with reduced susceptibility to the HtrA inhibitor. The variants were changed in membrane fatty acid composition, outer membrane proteins, and transcription of stress genes. Earlier and more synchronous cellular exit was observed. Combined, this links stress response to fatty acids, membrane proteins, and HtrA interplay with the outcome of disrupted timing of chlamydial cellular exit.</p

    Aversive memory formation in humans involves an amygdala-hippocampus phase code

    Full text link
    Memory for aversive events is central to survival but can become maladaptive in psychiatric disorders. Memory enhancement for emotional events is thought to depend on amygdala modulation of hippocampal activity. However, the neural dynamics of amygdala-hippocampal communication during emotional memory encoding remain unknown. Using simultaneous intracranial recordings from both structures in human patients, here we show that successful emotional memory encoding depends on the amygdala theta phase to which hippocampal gamma activity and neuronal firing couple. The phase difference between subsequently remembered vs. not-remembered emotional stimuli translates to a time period that enables lagged coherence between amygdala and downstream hippocampal gamma. These results reveal a mechanism whereby amygdala theta phase coordinates transient amygdala -hippocampal gamma coherence to facilitate aversive memory encoding. Pacing of lagged gamma coherence via amygdala theta phase may represent a general mechanism through which the amygdala relays emotional content to distant brain regions to modulate other aspects of cognition, such as attention and decision-making

    Unmasking selective path integration deficits inAlzheimer’s disease risk carriers

    Get PDF
    Alzheimer’s disease (AD) manifests with progressive memory loss and spatial disorientation. Neuropathological studies suggest early AD pathology in the entorhinal cortex (EC) of young adults at genetic risk for AD (APOE4-carriers). Because the EC harbors grid cells, a likely neural substrate of path integration (PI), we examined PI performance in APOE4-carriers during a virtual navigation task. We report a selective impairment in APOE4-carriers specifically when recruitment of compensatory navigational strategies via supportive spatial cues was disabled. A separate fMRI study revealed that PI performance was associated with the strength of entorhinal grid-like representations when no compensatory strategies were available, suggesting grid cell dysfunction as a mechanistic explanation for PI deficits in APOE4-carriers. Furthermore, posterior cingulate/retrosplenial cortex was involved in the recruitment of compensatory navigational strategies via supportive spatial cues. Our results provide evidence for selective PI deficits in AD risk carriers, decades before potential disease onset

    Aphasic seizures in patients with temporopolar and anterior temporobasal lesions: a video-EEG study

    Get PDF
    Studies of patients with temporal lobe epilepsy provide few descriptions of seizures that arise in the temporopolar and the anterior temporobasal brain region. Based on connectivity, it might be assumed that the semiology of these seizures is similar to that of medial temporal lobe epilepsy. However, accumulating evidence suggests that the anterior temporobasal cortex may play an important role in the language system, which could account for particular features of seizures arising here. We studied the electroclinical features of seizures in patients with circumscribed temporopolar and temporobasal lesions in order to identify specific features that might differentiate them from seizures that originate in other temporal areas. Among 172 patients with temporal lobe seizures registered in our epilepsy unit in the last 15 years, 15 (8.7%) patients had seizures caused by temporopolar or anterior temporobasal lesions (11 left-sided lesions). The main finding in our study is that patients with left-sided lesions had aphasia during their seizures as the most prominent feature. In addition, while all patients showed normal to high intellectual functioning in standard neuropsychological testing, semantic impairment was found in a subset of 9 patients with left-sided lesions. This case series demonstrates that aphasic seizures without impairment of consciousness can result from small, circumscribed left anterior temporobasal and temporopolar lesions. Thus, the presence of speech manifestation during seizures should prompt detailed assessment of the structural integrity of the basal surface of the temporal lobe in addition to the evaluation of primary language areas

    Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins

    Get PDF
    Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association studies (GWAS) in studies addressing the LDL cholesterol response to statins, including up to 18,596 statin-treated subjects. We validate the most promising signals in a further 22,318 statin recipients and identify two loci, SORT1/CELSR2/PSRC1 and SLCO1B1, not previously identified in GWAS. Moreover, we confirm the previously described associations with APOE and LPA. Our findings advance the understanding of the pharmacogenetic architecture of statin response
    • …
    corecore