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SUMMARY

Understanding how emotional processing modulates learning and memory is crucial for the treatment of

neuropsychiatric disorders characterized by emotional memory dysfunction. We investigate how human

medial temporal lobe (MTL) neurons support emotional memory by recording spiking activity from the hippo-

campus, amygdala, and entorhinal cortex during encoding and recognition sessions of an emotional memory

task in patients with pharmaco-resistant epilepsy. Our findings reveal distinct representations for both

remembered compared to forgotten and emotional compared to neutral scenes in single units and MTL pop-

ulation spiking activity. Additionally, we demonstrate that a distributed network of human MTL neurons ex-

hibitingmixed selectivity on a single-unit level collectively processes emotion andmemory as a network, with

a small percentage of neurons responding conjointly to emotion and memory. Analyzing spiking activity en-

ables a detailed understanding of the neurophysiological mechanisms underlying emotional memory and

could provide insights into how emotion alters memory during healthy and maladaptive learning.

INTRODUCTION

Emotional events have a remarkable ability to elicit enduring

traces in our memory and form an essential part of our autobio-

graphical history.1,2 Events with strong emotional components,

either positive or negative, can often be vividly recalled for

one’s entire lifetime. There is substantial evidence that the

medial temporal lobe (MTL), including the amygdala and the hip-

pocampus, plays a significant role in emotional episodicmemory

in both animals3 and humans.1,2 In humans, the constraints

posed by existing non-invasive neuroimaging methods necessi-

tate the utilization of direct electrophysiological recordings from

the amygdala, hippocampus, and surrounding entorhinal cortex

to study the neuronal dynamics involved in emotional memory

encoding and retrieval. Multiple previous intracranial electroen-

cephalogram (EEG) studies found increased gamma activity to

emotional stimuli compared with neutral ones.4–8 While gamma

activity might be a proxy for neuronal spiking,7 few studies

have examined spiking activity related to human emotional

memory.

Human hippocampal and amygdala spiking activity has been

shown to differentially respond to human facial expressions,9

while human amygdala neurons were shown to encode the sub-

jective judgments of emotions conveyed by facial expressions

rather than merely the physical attributes of the facial stimuli.10

Another recent study showed that human amygdala neuronal

spiking is co-modulated with high gamma power and fMRI

blood-oxygen-level-dependent (BOLD) activity during videos of

fearful faces.11 However, less is known about how single cells

contribute to emotional scene memory in humans. Therefore,

this study was designed to assess the MTL neuronal dynamics

involved in emotional scene memory. As with most intracranial

human neuronal studies,12–16 we grouped all recorded brain re-

gions together for the main analyses but conducted secondary

analyses when segregating by brain region.

We first analyzed single-unit responses before assessing

population dynamics using demixed principal-component

analysis (dPCA).17 We implemented dPCA to succinctly sum-

marize the mixed selectivity in our recorded neuronal popula-

tion, as dPCA overcomes some shortcomings associated

with traditional PCA. While PCA efficiently extracts principal

components (PCs) from neural data, it overlooks stimulus-

and decision-related information, resulting in mixed selectivity

and complex population activity dominated by temporal dy-

namics. In contrast, dPCA strikes a balance between

demixing and compression, effectively separating neural activ-

ity related to different task parameters while reducing data

dimensionality.
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We hypothesized that the recorded neuronal population

would effectively distinguish between remembered and

forgotten scenes as well as emotional and neutral stimuli.

Furthermore, we expected that the hippocampus, recognized

for its crucial role in memory functions, would demonstrate

responsiveness to memory-related processes, while the

amygdala, known for its involvement in emotional processing,

would exhibit sensitivity to emotional content. Moreover,

beyond the examination of regional differences, our investiga-

tion aimed to assess whether the entire MTL neuronal popula-

tion collectively reflects the intricate interplay between

emotional and memory processes. By investigating the neural

mechanisms underlying the integration of memory and

emotion, we seek to advance our understanding of the funda-

mental cognitive processes of emotional scene memory en-

coding and recognition.

RESULTS

MTL neurons respond differentially to emotional and

remembered stimuli

Findings from research in cognitive science, neuropsychology,

and neuroimaging consistently suggest that human memory

performance, specifically in recognition memory tasks, can be

attributed to two separate memory processes, commonly

known as recollection and familiarity.18 While familiarity is asso-

ciated with variable memory strength, recollection involves a

threshold retrieval process,18 where individuals retrieve ‘‘quali-

tative’’ information about past events, such as temporal and

spatial context and associations between event components.

When we focus on the meaning of a stimulus (deep processing;

e.g., determining whether a word is concrete or abstract,

whether a scene is inside or outside) instead of its perceptual

features (shallow processing; e.g., whether it is in upper- or

lowercase), it enhances our ability to remember it and, to a

lesser extent, our sense of familiarity with it.18 We implemented

an indoor/outdoor judgment to improve memory performance

and examine the neuronal basis of deep emotional memory en-

coding18 by exclusively focusing on remembered (recollected)

compared with unremembered events without considering

familiarity.

Nine patients (4 males) with drug-resistant epilepsy partici-

pated in an incidental emotional memory task (Figure 1A). Dur-

ing encoding, participants responded ‘‘indoor’’ or ‘‘outdoor’’ to

120 images, one-third of which were emotional (aversive).

Twenty-four hours later, a period thought sufficient for consol-

idation of emotional memories,19,20 participants responded

Remember (R), Know (K), or New (N) during a recognition mem-

ory task that contained all emotional and neutral old images

and the same number of new images.7 There was a significant

main effect of memory showing a significantly greater percent-

age of remembered vs. false alarm trials for both emotional and

neutral trials (repeated-measures ANOVA, F(1,8) = 13.1, p =

0.0068), indicating that patients actually remembered the im-

ages. There was no interaction between memory and emotion

in the analyzed dataset (Table S2) presumably because this

study exclusively focused on patients with microelectrodes

recording single-unit activity. However, an interaction was de-

tected when including 13 additional subjects with only local

field potential (LFP) electrodes.7 Due to low numbers of K

and false alarm trials (Table S1), these trials were excluded

from the primary analyses.

Neuronal responses from 5 patients with acceptable mem-

ory performance (Table S2) were analyzed during task perfor-

mance. Spike sorting21 was conducted, and spike quality met-

rics were assessed (Figure S1). In total, we detected 542

putative single units (referred to as neurons hereafter) in the

hippocampus, amygdala, and entorhinal cortex of all patients

(258 during encoding and 284 during recognition). During en-

coding trials, we compared spiking activity between emotion-

ally aversive (e) and neutral (n) scenes, further classified as

subsequently remembered (eR and nR) or subsequently

forgotten trials (eF and nF); i.e., old items at recognition that

received a new response. For recognition trials, we compared

firing rate patterns between remembered hits (RHits), misses

(Miss), and correct rejections (CR) for both emotional and

neutral trials.

To illustrate the diversity of responses during encoding, raster

plots and smoothed firing rates of 4 different individual neurons

are plotted in Figures 1B–1E. We often observed higher firing

rates during encoding for both e vs. n and subsequent R vs.

forgotten (F; Figures 1B and 1C), although some neurons ex-

hibited the opposite response type (Figure 1E). The responses

of four neurons recorded during recognition illustrate the diver-

sity of neuronal responses, often with some form of emotional

differentiation (Figures 1F–1I).

Figure 1. Activity of MTL neurons during emotional memory encoding and retrieval

(A) Illustration of emotional memory task with 2 emotion types, emotional (aversive) and neutral, presented during encoding and recognition task phases. Images

were taken from Unsplash.

(B–G) Trials are sorted by grouping trial types together. Baseline and stimulus time periods are shaded gray. e, emotional; n, neutral; R, subsequently

remembered; F, forgotten; RHits, remembered hits; M, misses. CRs were excluded from the example plots because they were similar to misses. Shaded regions

are the standard error of the mean (SEM).

(B–E) Encoding.

(B) Hippocampal neuron with both main effects and an interaction.

(C) Hippocampal neuron with a main effect of memory only.

(D) Amygdala neuron with a main effect of emotion and trend toward an interaction (p = 0.07).

(E) EC neuron with a main effect of emotion that responded more strongly to neutral scenes.

(F–I) Recognition.

(F) EC neuron with a main effect of memory and trend toward an interaction (p = 0.06).

(G) Hippocampal neuron with both main effects.

(H and I) Example neurons with main effects of emotion.
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Summarizing firing rate changes by emotion and

memory

We first examined stimulus-evoked changes in firing rate (i.e.,

event responsiveness). We compared raw spike counts between

baseline and peri-stimulus time periods (0.2–1.5 s before and af-

ter stimulus presentation, respectively) of all conditions using a

permutation test. Percentages of neurons with significant firing

rate changes are shown for encoding (Figure 2A) and recognition

(Figure 2B).

Event responsiveness alone merely indicates whether a

neuron responds to a stimulus but provides no insight into differ-

ential selectivity when comparing various trial types. We investi-

gated differential responding by analyzing spike counts during

the peri-stimulus periods of different trial types. For each neuron,

we performed a 23 2 repeated-measures ANOVAduring encod-

ing (Figure 2C; e vs. n and R vs. F) and a 2 3 3 repeated-mea-

sures ANOVA during recognition (Figure 2D; RHits vs. Miss vs.

CRs). To determine whether the observed numbers of emotion,

memory, or emotional memory processing neurons were above

chance, we used a bootstrapping procedure to compare the

number of observed cells with a null distribution.14 We found

significantly more emotion (n = 27 encoding, n = 39 recognition)

A C B D

E
F

G

H

Figure 2. The population of single neurons differentially represented remembered and forgotten images

Data are from 5 subjects.

(A) Percentage of neurons with significant differences in spike counts between baseline and stimulus during encoding. Trial types with more data have higher

chances of showing event responsiveness (i.e., neutral and nF).

(B) Same as (A) during recognition.

(C) Bar charts showing percentages of selectively responding neurons as a percentage of all neurons (left) and selective neurons (right). n.s., not significant; E,

emotional; M, memory; X, interaction.

(D) Same as (C) but during recognition.

(E) Bootstrappingwas used to determinewhether the number of observed neurons (orange lines) was above chance. The p value is computed as the proportion of

chance observations (blue) that surpasses the observed count. See also Figures S2A–S2C and S3.

(F) Same as (E) but during recognition.

(G) Averaged absolute-valued Z scores of all neurons for each trial type used in the linear mixed-effects model. Error bars represent the SEM.

(H) Bootstrapping was used to determine whether a significant number of neurons distinguished between pairs of trial types during recognition. See also

Figures S2D–S2F.
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and memory (n = 18 encoding, n = 20 recognition) neurons than

expected by chance during both encoding and recognition but

not emotional memory (interaction, n = 16 encoding, n = 13

recognition) neurons (Figures 2E and 2F). This indicates that a

significant number of neurons responded differently to remem-

bered compared to forgotten trials during encoding (Figure 2E).

During recognition, we found significant differences when

comparing RHits to Misses and RHits to CRs, but Misses and

CRswere similar (Figure 2H). We performed all pairwise compar-

isons for know hits (KHits) but did not find any significant differ-

ences after correcting for multiple comparisons (Figure S2D).

These analyses were repeated for each brain region (Figure S2),

by brain region including K trials (Figure S2), and for each subject

(Figure S3). During encoding, we found main effects of memory

in the hippocampus and entorhinal cortex (EC) and main effects

of emotion in the amygdala and hippocampus (Figures S2A–

S2C). During recognition, we found main effects of emotion in

all 3 brain regions and a main effect of memory in the EC

(Figures S2E and S2F).

To quantify variations in firing rates over the pool of recorded

neurons, we calculated Z scores for each trial type and

compared them with two linear mixed-effects models, one for

encoding (Figure 2G) and another for recognition, using subject

and neuron as nested random intercept effects. During encoding

(258 neurons), we found a significant main effect of emotion

(c2(1) = 4.31, p = 0.038), a significant emotion3memory interac-

tion (c2(1) = 4.05, p = 0.044), and a trend toward a main effect of

memory (c2(1) = 2.94, p = 0.086). Follow-up pairwise compari-

sons showed that there was a significant increase in firing rates

for subsequently remembered compared to subsequently

forgotten emotional items (Z ratio = 2.339, p = 0.019), while there

was no such effect for neutral items (Z ratio = 0.284, p = 0.777).

We did not find any significant effects during recognition (data

not shown).

Emotionality interacts with memory during encoding in

MTL neuronal populations

We characterized the mixed selectivity of the MTL neuron popu-

lation by projecting the firing rate across the entire population of

MTL neurons on demixed PCs (dPCs) by dPCA.21 A key advan-

tage of dPCA lies in its ability to incorporate all neuronal data

without imposing significance thresholds on individual neurons

(that could eliminate borderline neurons like in Figures 1D and

1F) to determine how an entire population represents behavioral

variables. We used dPCA to decompose neuronal population

activity into components concerning task parameters (stimulus

onset and offset), memory performance, and emotion (emotional

vs. neutral) during encoding (Figure 3) and recognition (Figure 4).

During encoding, the cumulative explained variance of the first

15 dPCs exceeded the estimated signal variance (Figure 3A),

indicating that the unexplained variance is likely due to noise.17

The first four dPCs explained 55.5% of the variance and demon-

strated several important findings (Figure 3B). The largest

component, dPC1, explained over 23% of the variance associ-

ated with condition-independent sources, reflecting neurons’

altering firing rates across all trial types, possibly indicative of

event responsiveness (Figures 2A and 2B). Overall, condition-in-

dependent components, including dPC 1, accounted for 41% of

the normalized explained variance (Figure 3D). Emotion emerged

as the second largest variable, constituting 25% of the normal-

ized explained variance (Figure 3D). Notably, dPC 2 clearly

distinguished emotional from neutral stimuli during the stimulus

presentation, constituting over 14% of the explained variance

(Figure 3B). dPC 3 captured the interaction between emotion

and memory during the stimulus presentation (Figure 3B). dPC

4 highlighted memory-related activity during the stimulus pre-

sentation (Figure 3B). Significant time windows were defined

when the real classification accuracy surpassed 97.5% of

1,000 shuffled accuracies (Figure 3B) and at several significance

thresholds (Figure 3C).

A visual representation of the largest emotion (dPC 2) and

memory (dPC 4) components plotted against each other re-

vealed a clear separation between the four trial types in compo-

nent space (Figure 3E). Similarly, plotting the interaction compo-

nent (dPC 3) against the emotional one (dPC 2) illustrates

separation of all trial types (Figure 3F). Collectively, these three

dPCs revealed differential firing rate components for all four

combinations of emotion and memory during encoding and

roughly corresponded to the percentages of neurons with similar

response characteristics (Figure 2C).

Additionally, since PCA explained more variance than dPCA,

we plotted the first 5 regular PCs to illustrate the differences be-

tween the two methods (Figure 3G). PC 1 resembled dPC 1 but

with some emotional effect, illustrating proper demixing in dPC

1. PC 2 illustrates the strong eR responding, while PCs 3–5 are

less readily interpretable. Finally, we performed a leave-one-

out analysis to examine the contribution of each recorded brain

region but did not find strong evidence of any region performing

a single function (Figure S4, top).

Emotion and memory are distinguishable in MTL

neuronal population activity during recognition

We next extracted dPCs from the neuronal activity during recog-

nition, which revealed different yet complementary aspects of

the neuronal population activity (Figure 4). First, the overall ex-

plained variance of the first 15 dPCs reached a comparable level

as in encoding (compare Figures 3A and 4A). The largest dPC

was again related to condition-independent activity (Figure 4B,

top row), with dPC 1 peaking just after stimulus offset. Addition-

ally, dPC 4 peaked near the average reaction time of all subjects

(1.65 s, std = 0.54 s). Accordingly, condition-independent com-

ponents captured nearly half of the normalized component vari-

ance (Figure 4D). dPC 2 captured the different responses to

emotional compared with neutral images beginning early during

stimulus presentation and extending until at least 1.5 s after stim-

ulus presentation (Figure 4B). Population activity captured by

dPC 3 reflected a difference between images that were remem-

bered (RHit) compared with both misses (old images judged as

new) and CRs. No significant interaction between emotion and

memory was detected during recognition (Figure 4B). The de-

coding accuracy increased for emotion earlier than for memory,

indicating that emotional differences were detected before

memory ones (Figure 4C). Plotting the task-related dPCs against

each other revealed clear differences between RHits compared

to both misses and CRs, with the latter two consistently overlap-

ping in component space (Figures 4E and 4F). This suggests that
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MTL neurons represent subjective memory over objectively dis-

tinguishing old from new images, consistent with a previous

report.14

We again plotted the first 5 regular PCs to illustrate the differ-

ences between the two methods (Figure 4G), and the overall

trend was similar to encoding with PC 1 aligning with dPC 1

except mixing condition-independent activity with emotional re-

sponding. As during encoding, PC 2 differentiated emotional

RHits from all other trial types. Finally, we performed a leave-

one-out analysis to examine the contribution of each recorded

A B

CD

E

F

G

Figure 3. Demixed PCA distinguished all trial types during emotional memory encoding

Data are from 5 subjects and 258 neurons.

(A) The cumulative explained variance (var.) of the first 15 dPCA components surpassed the estimated signal variance (dashed line), and the largest 4–6 dPCs

explain similar variance to their PCA counterparts.

(B) dPCs are plotted as a function of peri-stimulus time. Vertical lines represent stimulus onset (0 s) and offset (0.5 s). Horizontal black bars represent time periods

when the real classification accuracy surpassed 97.5% of the shuffled accuracies. Top row: condition-independent components represent changes in neuronal

firing rate time-locked to stimulus presentation. Second row: differences in memory, subsequently remembered vs. forgotten, began during stimulus presen-

tation. Third row: differences between emotion (emotional vs. neutral) began during stimulus presentation. Bottom row: an interaction between memory and

emotion was detected in a short time window near stimulus offset.

(C) Cross-validated time-dependent classification accuracy of linear classifiers (orange) was compared with accuracy from 1,000 shuffled distributions (gray

regions). Time windows when real accuracy surpassed 100%, 97.5%, and 95% (p < 0.05, two-tailed) are defined (black lines) below the respective distributions.

(D) Component variance (%) is the percentage of total variance explained by the first 15 components. The first 5 bars are each predominantly one color, indicating

an acceptable level of component demixing. The vertical axis is truncated to show the distribution of variance, and the highest variances are in (B) titles. Pie chart

percentages are normalized to the explained variance of the first 15 components. Ind., independent.

(E and F) Plotting the normalized firing rate of 2 dPCs with significant time windows revealed separation of the 4 trial types.

(G) Regular principal components (PCs) explained more variance than dPCs but did not effectively separate trial types.
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brain region and found further evidence that the hippocampus

and EC contributed most strongly to the memory effects (Fig-

ure S4, bottom), consistent with the previously mentioned mem-

ory effects (Figures S2D and S2E). We also found the biggest

deterioration of emotional selectivity by removing the hippocam-

pus (Figure S4, bottom).

DISCUSSION

Our findings emphasize that neural populations within the human

MTL are actively engaged in concurrent memory and emotional

processing during encoding and retrieval, largely independent of

specific MTL regions. Consistent with our brain region hypothe-

ses, we observed emotion-related neuronal activity in all re-

cordedMTL regions andmemory-related activity in both the hip-

pocampus and EC (Figure S2). Our results align with a growing

body of human intracranial research, which consistently inte-

grates multiple MTL regions12–16 to unveil novel insights into

mnemonic processing. This collective evidence strengthens

the well-established role of the MTL in emotional mem-

ory7,10,22–24 and underscores the functional significance of the

EC.25–27 Our results support the hypothesis that the human

MTL responds to its perceived environment9 to relate and segre-

gate experiences using mixed selectivity of neuronal responses

that are subsequently read out by downstream brain regions to

enable conscious experience.

A B

CD

E

F

G

Figure 4. Demixed PCA distinguished memory response and emotion during emotional memory recognition

Data are from 5 subjects and 284 neurons. The plot layout matches Figure 3 but with recognition neurons.

(A) Same as Figure 3A.

(B and C) The emotional effect begins before the memory effect.

(D) Same as Figure 3D.

(E and F) Plotting the normalized firing rate of 2 dPCs revealed sepration of RHits from Misses and CRs, which were consistently overlapping.

(G) Regular principal components (PCs) explained more variance than dPCs but did not effectively separate trial types.

Cell Reports 43, 114071, April 23, 2024 7

Report
ll

OPEN ACCESS



To illustrate the various forms of mixed firing rate selectivity in

the recorded population, firing rate patterns of all recorded neu-

rons were qualitatively depicted (Figures 1 and 2) before quanti-

fying the population firing rate dynamics using dPCA (Figures 3

and 4). dPCA allows the heterogeneity of neuronal responses

to be incorporated into one unified description of task-related

population activity.17 dPCA separated memory and emotional

representations to provide further evidence that MTL neuronal

populations process both types of information. One noticeable

difference between the dPCA results for encoding and recogni-

tion is that the condition-independent components, which are

components representing changes in firing rates irrespective of

memory or stimulus type and therefore related to event respon-

siveness (Figures 2A and 2B), explained more variance during

the recognition test (Figures 3B, 3C, 4B, and 4C, gray). During

recognition, participants are actively performing memory

retrieval before they press a button to make their responses.

Interestingly, the second normalized firing rate peak in dPC 4

occurred prior to the average reaction time of about 1,650 ms

(Figure 4B), but no such component appeared during encoding

without an explicit memory task and when reaction times were

shorter and less variable.

Differences in the latency to respond to emotion and memory

in the recorded neuronal populations were also revealed by

dPCA. Namely, differences between emotional and neutral stim-

uli were detected earlier than differences between remembered

and forgotten stimuli during retrieval (Figure 4). This finding cor-

responds to scalp EEG results showing that event-related poten-

tial (ERP) differences occur earlier between emotional and

neutral hits than an old/new (memory) effect.28 Emotional fea-

tures must be perceived quickly to modulate attention or

behavior,29 and the fact that emotional salience is perceived

before memory judgments is consistent with the sequence of

events required for emotional enhancement of memory.30 Alter-

natively, during encoding, these effects occurred nearly simulta-

neously with the significant interaction component (Figure 3B).

We found that, on average, neurons exhibited higher firing

rates during the encoding of subsequently remembered items

(eR/nR) compared with subsequently forgotten ones (eF/nF).

This finding is consistent with the difference due to memory hy-

pothesis31 and may reflect successful memory encoding. Addi-

tionally, the significant interaction between emotion andmemory

detected during encoding using linear mixed-effects models and

dPCA could be related to the frequently observed memory

enhancement for emotional compared to neutral items.7,23

Although we did not find a memory enhancement for emotional

images in our patient sample (Table S2), the dPCA results sug-

gest that there is a neuronal mechanism for this enhancement

in MTL neurons near stimulus offset (Figure 3), a time window

consistent with the previously detected emotion by memory

interaction in amygdala gamma activity.7 Interestingly, the timing

of the encoding interaction is similar to the late positive potential

(LPP) ERP effect in scalp EEG that typically begins around 300–

400 ms post stimulus presentation.32 Besides timing, the LPP

shares other characteristics with our effects as it is larger for

emotional than neutral stimuli33 and is enhanced for subse-

quently being remembered compared to subsequently forgotten

stimuli during encoding.34

We found a significant interaction between emotion and

memory during encoding using the linear mixed-effects model

and dPCA, but only a trend in the behavioral results and not

when counting the number of neurons. Since emotional

scenes were better remembered than neutral scenes in our

previous study with a large sample,7 the present results

emphasize the importance of using population-based ana-

lyses to understand neuronal network dynamics over select-

ing neurons based on individual firing rates for further anal-

ysis.17 We did not find a significant number of neurons

exhibiting an emotional memory interaction, which is consis-

tent with the idea of ‘‘concept cells,’’ where neurons with

unique, discrete representations form associations or net-

works to represent larger concepts.35

Contrary to encoding, no significant interaction between

emotion and memory was detected using dPCA during recog-

nition despite the E3M interaction representing 12%of the ex-

plained variance (Figure 4D). However, the recognition dPCA

results suggest that misses (old items judged as new) and

CRs (correctly identified new items) are similarly represented

in the recorded neuronal population (Figures 4B–4E, dPC 3,

for example). This suggests that MTL neurons represent a sub-

jective component of memory experience (the feeling that

something is new) instead of a veridical old/new distinction,

which is consistent with previous neuronal and fMRI

findings.14,36

Limitations of the study

A major limitation of this study is the small sample size, which

prevented us from drawing stronger conclusions about differ-

ential brain region computations. We cannot exclude the possi-

bility that the absence of a significant number of neurons

showing an emotional memory interaction during encoding is

related to our relatively small sample size. Additionally, human

single-neuron recordings are only performed in people with

intractable epilepsy who can have poor overall memory perfor-

mance.37 Although statistically above chance level, the perfor-

mance in this cohort was relatively low (Table S2) and lower

than that of a larger cohort of patients undergoing intracranial

recordings performing the same task.7 Future experiments

could attempt to improve memory performance by increasing

the presentation time or limiting recognition judgments to old/

new. Another limitation is that, since encoding and retrieval

were performed 24 h apart, it is highly unlikely that we recorded

the same neurons at both phases. Since emotional modulation

of memory consolidation is thought to require sleep,19 it is diffi-

cult to shorten the encoding-retrieval delay to perform repre-

sentational similarity analysis on neuronal populations, as

described recently.38

Conclusions

Previous studies have shown that remembering emotionally

aversive events requires collaborative activity between

cortical and subcortical MTL regions that enable mnemonic

processing.1,7,23,27 Although a nonsignificant number of neu-

rons demonstrated selective firing for the conjoint features

of emotion and memory performance, we found a significant

emotional memory interaction during encoding in the firing
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rate components extracted from population activity of neu-

rons in the amygdala, hippocampus, and EC. Understanding

human neuronal network dynamics can ultimately yield novel

clinical insights.39 Improving our understanding of the neuro-

physiological mechanisms underlying emotional memory can

provide insights not only into the pathogenesis of psychiatric

disorders characterized by maladaptive enhancement of

emotional components of memory,40 as in post-traumatic

stress disorder (PTSD)41 and phobia, but also for epilepsy pa-

tients, where memory networks are disrupted by resective

surgery42,43 and deep brain stimulation.44,45
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by lead contact Dustin Fetterh-

off (dustin.fetterhoff@ctb.upm.es).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d All spike trains and waveforms collected during the experiments have been deposited on GIN in MATLAB format (https://gin.

g-node.org/dfetterhoff/emotional_memory_neuronal_data to be used with the FieldTrip toolbox) that can be run to reproduce

all result and figures using our scripts on GitHub (https://github.com/dustinf1989/emotional_memory_neuronal_analyses).

DOIs are listed in the key resources table. Ethical approval and informed consent obtained from patients did not include the

publication of raw patient data, thus raw signals from intracranial microwires cannot be shared.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants were patients with medication-resistant epilepsy undergoing pre-operative diagnostic monitoring with implanted elec-

trodes in the medial temporal lobe (9 participants, aged 25–55, 4 male). All participants had normal or corrected-to-normal vision,

were not color-blind, and were right-handed as validated by neuropsychological testing. All patients had borderline to normal IQs

ranging from 71 to 109, and there was no correlation between IQ or neuropsychological tests and task performance. All patients

signed informed consent and did not receive financial compensation. All participation was voluntary, and participants had the right

to withdraw their consent at any time during the experiment. The study followed the declaration of Helsinki for medical research

involving human subjects and had full approval from both the local ethics committee of Kantonale Ethikkommission, Zurich,

Switzerland (PB-2016-02055) and the European Research Council Ethics Board.

METHOD DETAILS

Surgical procedure

Depth electrodes (1.3 mm diameter, 8 macro-contacts of 1.6 mm length and spacing between contact centers 5 mm; Ad-Tech, Ra-

cine, WI, www.adtechmedical.com) were stereotactically implanted into the hippocampus, amygdala, and entorhinal cortex. Nine

microelectrodes extended approximately 4 mm from the tip of the depth electrode. We use the term "Entorhinal Cortex" to describe

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Spike trains & waveforms This paper https://doi.org/10.12751/g-node.q66jki

Software and algorithms

MATLAB MATLAB 2022b http://www.mathworks.com

Combinato spike sorting Performed in Python 3.8 https://github.com/jniediek/combinato

FieldTrip toolbox Performed in MATLAB 2022b https://doi.org/10.1155/2011/156869

Demixed PCA Performed in MATLAB 2022b https://github.com/machenslab/dPCA

Custom MATLAB code This paper https://doi.org/10.5281/zenodo.10782334

lme4 package Performed in R (v4.2.2) with RStudio

(v2022.12.0)

https://github.com/lme4/lme4

Other

Macro/micro depth electrodes Ad-Tech www.adtechmedical.com

ATLAS recording system NeuraLynx ATLAS
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the neuroanatomical target of medial temporal cortical electrodes, and note that, due to inter-patient variability in anatomy, partic-

ularly of the collateral sulcus, some wires may be in perirhinal cortex.

Electrode contact localization and visualization

Electrode localization was performed for each patient using the following pipeline: 1) co-registration of pre-electrode placement T1-

weightedmagnetic resonance images (pre-MRI) with the post-electrode placement CTs (post-CT). 2) CT andMRI images were skull-

stripped, respectively by i) filtering out all voxels with signal intensities between 100 and 1300 HU and by ii) spatially normalizing the

image to MNI space employing the New Segment algorithm in SPM8 (http://www.fil.ion.ucl.ac.uk/spm). 3) The resultant inverse

normalization parameters were then implemented to the brain mask supplied in SPM8 and the mask was converted into the native

space. 4)We filtered out all voxels in pre-MRI lying outside the brainmask andwith a signal value in the highest 15th percentile. 5) The

skull-stripped pre-MRI was then co-registered and re-sliced to the skull-stripped post-CT. 6) The pre-MRI was normalized to the

post-CT, thus transforming the pre-MRI image into native post-CT space. 7) Finally, we thresholded the post-CT to only visualize

electrode contacts and overlaid the two images. Contact visualization was performed using Lead-DBS,46 To reconstruct and visu-

alize the electrodes, we first selected the electrodemodel (Ad-Tech), co-registered CT toMRI using the advanced normalization tools

(ANTs) and volumes were normalized into MNI ICBM 2009b nonlinear asymmetrical space based on preoperative MRI.47 The soft-

ware also corrects for brain shift. We pre-reconstruct electrodes using the manual reconstruction. This involved marking the tip of

each electrode and another point along the electrode trajectory manually. Following this, an automatic reconstruction was executed

based on the electrode model (number of contacts and their spacing was considered). The reconstructed electrodes underwent vi-

sual inspection, and, in case of any misalignments, wemanually refined the reconstruction based on postoperative CT by placing the

trajectory as precisely as possible within the center of the electrode artifact.46 Using Lead-group we visualized all electrodes and

saved the MNI coordinates for each contact. Finally, we localized the microelectrode wires by projecting the three-dimensional

extension from the electrode tip (Figure S1).

Stimuli

Behavioral, local field potential, and anterior hippocampal neurons were published as ‘‘Cohort 2’’ in a previous manuscript7 where

methods are described in more detail and briefly summarized here. Participants were shown 40 emotional and 80 neutral color

scenes during the encoding session. One day later, all old images were intermixed with the same number of new emotional and

neutral images during the recognition session to yield 120 old and 120 new images. All 80 emotional images were highly arousing

and aversive (mutilations, attacks, guns, blood, etc.) scenes selected from the International Affective Picture System (IAPS).48 149

neutral images were taken from IAPS (neutral people and household scenes) and 11 neutral landscape pictures were obtained

from the internet. Mean normative IAPS picture ratings (s.e.m.) on a 9-point scale for valence were 5.05 (±0.05) for neutral, and

2.04 (±0.05) for emotional pictures (lower ratings are more negative), and for arousal were 3.29 (±0.06), and 6.3 (±0.07) for neutral

and emotional pictures (higher ratings are more arousing), respectively.

Behavioral task

Prior to signing informed consent, patients were shown one emotional (aversive) IAPS picture and notified that they would see similar

images on both that and the subsequent day. Task instructions were provided verbally and on-screen in German. Encoding and

recognition sessions were performed during the second and third postoperative days (Figure 1A). Memory encoding was incidental,

as participants were not informed about a memory test until immediately before the recognition session. During both encoding and

recognition sessions, emotional and neutral images were pseudo-randomly presented (presentation time 0.5 s; interstimulus interval

3.5 s) with a constraint that at least one neutral image was presented between emotional ones. Images were presented on a laptop

about 50 cm from the subject. During encoding, participants made an indoor-outdoor judgment for each picture using the laptop

keyboard with labeled keys. During recognition, participants made a ‘‘remember,’’ ‘‘know,’’ or ‘‘new’’ decision (R-K-N).7

‘‘Remember’’ decisions were made if they could recall the exact image, while ‘‘know’’ decisions were made if an image seemed

familiar. During both recording sessions, participants were as still as possible while looking at the fixation cross in the center of

the screen and avoiding verbalizations.

Data acquisition

Intracranial EEG data were recorded against a common intracranial reference with the ATLAS system (0.5- to 5000-Hz passband,

Neuralynx, Bozeman, MT, USA; www.neuralynx.com) with a sampling rate of 30,000 Hz (Patients 1 and 2) or 32,768 Hz (Patients

5, 6, 8, 10, 11, 12 and 13) for each microelectrode and 4,000 Hz or 4,096 Hz for macroelectrodes.

QUANTIFICATION AND STATISTICAL ANALYSIS

Spike sorting

Spike sorting was performed using the default settings of the Python package Combinato21 for each encoding and recognition ses-

sion independently to identify putative single units termed neurons throughout this report. No attempt was made to merge neurons

between encoding and recognition sessions since they occurred 24 h apart, an interval too long to reliably claim to have the same
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neuron using microwires. Post-sorting, autocorrelograms, and interspike interval (ISI) histograms were inspected to manually elim-

inate artifactual clusters. Units with noisy waveforms and nonuniform shapes were removed. Only units with less than 3% of ISIs un-

der 3ms, amean firing rate >0.25 Hz, and at least one spike on 50 or 100 trials during encoding or recognition trials, respectively, were

included in subsequent analyses. Artifact spikes due tomechanical or electrical noise occurring 3ms before or after stimulus appear-

ance or disappearance were removed. Spike sorting quality was assessed with the percentage of interspike intervals less than 3ms

(Figure S1). The spike width, equal to peak – trough in ms, was computed to assess the distribution of waveform shape. Due to prob-

lemswith the recording equipment, no units were detected in Patient 11 and therefore we only included this patient’s behavioral data.

Single unit analyses

We excluded 3more patients from all neuronal analyses due to abnormal or poor behavioral performance (Tables S1 and S2). Patient

2 made all responses around 500 ms, coinciding with stimulus offset, and only chose Know once. Patients 10 and 12 were excluded

for poor memory performance because they had PR and d’ values near zero. All behavioral differences were similar in the reduced

sample (Table S2). All neuronal analyses were performed in 5 patients.

Event responsiveness was assessed by comparing spike counts between baseline (1.5–0.2 s before stimulus onset) and post-

stimulus time (0.2–1.5 s after stimulus onset) windows (gray shaded areas in Figures 1B–1I) using a permutation test by shuffling la-

bels 1,000 times. Event responsiveness was computed for all trial types in Figure 2A for encoding: emotional, neutral, emotional

subsequently remembered (eR), neutral subsequently remembered (nR), emotional subsequently forgotten (eF), and neutral subse-

quently forgotten (nF); and in Figure 2B for recognition: eRHits, nRHits, emotional missed (eM), neutral missed (nM), emotional correct

rejections (eCR), and neutral correct rejections (nCR). Percentages of neurons responding were determined using a p < 0.0.5

threshold to illustrate the stimulus responding in the recorded population (Figures 2A and 2B).

Differential selectivity was examined by comparing spike counts using 2x2 (during encoding) and 2x3 (during recognition) repeated

measures ANOVA (Figures 2C and 2D) for each neuron. We discarded all main effects when a significant interaction was detected for

any neuron. A bootstrapping procedure was used to determine whether the number of observed neurons was significantly above

chance.14 We calculated the null distribution by performing the same selection process 10,000 times after shuffling the labels asso-

ciated with each trial in a random manner to compare the bootstrapped data to the actual count of significant cells. This shuffling

eliminated any connection between the spiking response and the identity of the trials while maintaining the number of each trial

type. The p value was calculated by determining how many chance observations (blue histograms) surpass the observed count (or-

ange lines in Figures 2E, 2F and 2H). After finding a significant main effect of memory during recognition, we performed all 6 possible

pairwise analyses using an identical procedure and corrected for multiple comparisons using a Bonferroni correction (p < 0.0086) in

Figures 2E and S2D. In instances where no chance values exceeded the observed count, we assigned p values as 1 divided by the

number of bootstrap runs (i.e., p = 1/10000 = 0.0001). This procedure was repeated after segregating the dataset by brain region

(Figure S2) and by subject (Figure S3).

PSTHs and linear mixed effects model

To generate peri-stimulus time histograms, spike trains were filtered with a Gaussian kernel (s = 50 ms) and binned every 10 ms

creating single-trial firing rate vectors that were averaged in each condition to produce smooth peri-stimulus time histograms

(PSTHs; Figures 1B–1I, bottom panels). These PSTHs were entered into both a linear mixed effects model and demixed PCA. To

quantify overall neuronal activity using a mixed effects linear model, z-scores were computed for each trial:

z =

x � m

s

With x representing themean of the stimulus period over all trials for the respective stimulus type and both m and s derived from the

mean and standard deviation of the baseline period from all trials. If the average z-score over all trials was negative, the trial-by-trial

z-scores were multiplied by �1 to account for neurons that decreased their firing rates (abs(z)). The trial-by-trial z-scores were used

as inputs to a mixed-effects linear model (Figure 2G).

We analyzed the effect of emotion and memory on this absolute z-scored firing rate measure using linear mixed-effects models as

implemented in the lme4 package49 in R. The model included Emotion (emotional vs. neutral) and Memory (encoding: remembered

vs. forgotten; recognition: remembered vs. miss vs. correct rejection) as fixed effects and a nested random intercept effect of

PatientID and neuron. We used the ‘‘(1|Patient/Neuron)’’ random effect structure in this study to account for the fact that neurons

are nested within patients in our data. Encoding and recognition data were analyzed separately. We tested the significance of the

fixed effects and their interaction with omnibus c
2 Wald test as implemented in the car package.50 The model formula was:

abs(z) � 1 + Emotion * Memory + (1|PatientID/Neuron).

Pairwise comparisons were corrected for multiple comparisons using the Benjamini & Hochberg false discovery rate (fdr)

method.51 Additionally, the model was computed using spike times without a Gaussian filter and yielded the same statistically sig-

nificant differences.
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Demixed principal component analysis

Demixed principal component analysis (dPCA) deconstructs neuronal ensemble activity into labeled components forming a concise

and transparent overview of the population representation.17 dPCA overcomes the major shortcomings of PCA.17 While PCA effi-

ciently extracts principal components (PCs) from neural data, it does so without considering stimulus and decision-related informa-

tion, resulting in mixed selectivity. This limitation creates a complex representation of population activity dominated by temporal dy-

namics. In contrast, dPCA strikes a balance between two crucial objectives: demixing and compression. Demixing involves

separating neural activity related to different task parameters, while compression aims to reduce data dimensionality while preser-

ving original information.When comparing linear discriminant analysis (LDA), PCA, and dPCA, it becomes evident that LDA is adept at

demixing but distorts the data’s geometry, while PCA excels at compression but fails to separate stimuli effectively.

dPCA introduces an innovative approach by assuming a separate encoder axis for data reconstruction. This flexibility allows dPCA

to simultaneously achieve demixing and compression objectives. It selects a decoder axis that reconciles these goals, effectively

separating stimuli and preserving the data’s geometrical arrangement. The resulting projection maintains fidelity to the original

data, overcoming the trade-off between demixing and compression seen in PCA and LDA. Ultimately, dPCA provides a solution

that addresses both the complexity of neural representations and the mixing of stimulus and decision-related information.

The full analysis and software toolboxes for MATLAB and Python are described in detail in the original publication17 and summa-

rized here where we used the default algorithm parameters. Smoothed PSTHs (see Linear Mixed Effects Model) were used as inputs

to the dPCA algorithm to project neuronal firing patterns aligned to task-related activity onto a low-dimensional component space to

summarize population activity. The MATLAB toolbox was adapted to examine effects of emotion (E: emotional vs. neutral), memory

(M: remembered vs. forgetting in encoding; remembered vs.missed vs. correct rejections in recognition), and their interaction (E xM).

Condition-independent components reflect population-wide firing rate modulations occurring due to temporal characteristics of the

task, such as stimuli presentation and physical responses (Figures 3B and 4B, top rows). The ‘‘signal variance’’ (dashed line in

Figures 3A and 4A) estimates the level of potentially explainable variance, whereas the remaining variance can be considered noise

in the data.

To determine if the differences between individual dPCs were statistically significant, we classified conditions using each dPC as a

linear decoder. Horizontal black lines below component-time vectors signify time windows where the respective task parameters

were reliably separated from the neuronal population (Figures 3B, 3C, 4B and 4C). Significant time windows were computed using

1,000 iterations of stratified Monte Carlo leave-group-out cross-validation by shuffling trial type labels between conditions 1,000

times using a stratified procedure to match the number of trials per condition (see ‘‘Cross-validation to measure classification accu-

racy’’ in17). Significant time windows were defined where the real classification accuracy surpassed 97.5% of shuffled decoding ac-

curacies (Figures 3B and 4B). The 100%, 97.5%, and 95% (p < 0.05, two-tailed) areas of the shuffled distributions are also illustrated

with gray shading from lighter to darker (Figures 3C and 4C). Regular PCA was performed using a singular value decomposition

method included in the dPCA toolbox. The leave-one-out analyses were performed the same way except after excluding all neurons

from the specified brain region (Figure S4).
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