45 research outputs found
FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium
Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium.
Methods:Data were combined from 49 studies, including 53 835 cases and 50 156 controls, of which 89 050 (46 450 cases and 42 600 controls) were of European ancestry, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression.
Results:Little evidence of association with breast cancer risk was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95 confidence interval=1.02-1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2.
Conclusion:Our results suggest that common variants in the other FGF receptors are not associated with risk of breast cancer to the degree observed for FGFR2. © 2014 Cancer Research UK
Genome-wide association study of pancreatic fat: The multiethnic cohort adiposity phenotype study
Several studies have found associations between higher pancreatic fat content and adverse health outcomes, such as diabetes and the metabolic syndrome, but investigations into the genetic contributions to pancreatic fat are limited. This genome-wide association study, comprised of 804 participants with MRI-assessed pancreatic fat measurements, was conducted in the ethnically diverse Multiethnic Cohort-Adiposity Phenotype Study (MEC-APS). Two genetic variants reaching genome-wide significance, rs73449607 on chromosome 13q21.2 (Beta = -0.67, P = 4.50x10-8) and rs7996760 on chromosome 6q14 (Beta = -0.90, P = 4.91x10-8) were associated with percent pancreatic fat on the log scale. Rs73449607 was most common in the African American population (13%) and rs79967607 was most common in the European American population (6%). Rs73449607 was also associated with lower risk of type 2 diabetes (OR = 0.95, 95% CI = 0.89-1.00, P = 0.047) in the Population Architecture Genomics and Epidemiology (PAGE) Study and the DIAbetes Genetics Replication and Meta-analysis (DIAGRAM), which included substantial numbers of non-European ancestry participants (53,102 cases and 193,679 controls). Rs73449607 is located in an intergenic region between GSX1 and PLUTO, and rs79967607 is in intron 1 of EPM2A. PLUTO, a lncRNA, regulates transcription of an adjacent gene, PDX1, that controls beta-cell function in the mature pancreas, and EPM2A encodes the protein laforin, which plays a critical role in regulating glycogen production. If validated, these variants may suggest a genetic component for pancreatic fat and a common etiologic link between pancreatic fat and type 2 diabetes
Predicted gene expression in ancestrally diverse populations leads to discovery of susceptibility loci for lifestyle and cardiometabolic traits
One mechanism by which genetic factors influence complex traits and diseases is altering gene expression. Direct measurement of gene expression in relevant tissues is rarely tenable; however, genetically regulated gene expression (GReX) can be estimated using prediction models derived from large multi-omic datasets. These approaches have led to the discovery of many gene-trait associations, but whether models derived from predominantly European ancestry (EA) reference panels can map novel associations in ancestrally diverse populations remains unclear. We applied PrediXcan to impute GReX in 51,520 ancestrally diverse Population Architecture using Genomics and Epidemiology (PAGE) participants (35% African American, 45% Hispanic/Latino, 10% Asian, and 7% Hawaiian) across 25 key cardiometabolic traits and relevant tissues to identify 102 novel associations. We then compared associations in PAGE to those in a random subset of 50,000 White British participants from UK Biobank (UKBB50k) for height and body mass index (BMI). We identified 517 associations across 47 tissues in PAGE but not UKBB50k, demonstrating the importance of diverse samples in identifying trait-associated GReX. We observed that variants used in PrediXcan models were either more or less differentiated across continental-level populations than matched-control variants depending on the specific population reflecting sampling bias. Additionally, variants from identified genes specific to either PAGE or UKBB50k analyses were more ancestrally differentiated than those in genes detected in both analyses, underlining the value of population-specific discoveries. This suggests that while EA-derived transcriptome imputation models can identify new associations in non-EA populations, models derived from closely matched reference panels may yield further insights. Our findings call for more diversity in reference datasets of tissue-specific gene expression
Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation
We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10-11 to 5.0 × 10-21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10-6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation
Minority-centric meta-analyses of blood lipid levels identify novel loci in the Population Architecture using Genomics and Epidemiology (PAGE) study
Lipid levels are important markers for the development of cardio-metabolic diseases. Although hundreds of associated loci have been identified through genetic association studies, the contribution of genetic factors to variation in lipids is not fully understood, particularly in U.S. minority groups. We performed genome-wide association analyses for four lipid traits in over 45,000 ancestrally diverse participants from the Population Architecture using Genomics and Epidemiology (PAGE) Study, followed by a meta-analysis with several European ancestry studies. We identified nine novel lipid loci, five of which showed evidence of replication in independent studies. Furthermore, we discovered one novel gene in a PrediXcan analysis, minority-specific independent signals at eight previously reported loci, and potential functional variants at two known loci through fine-mapping. Systematic examination of known lipid loci revealed smaller effect estimates in African American and Hispanic ancestry populations than those in Europeans, and better performance of polygenic risk scores based on minority-specific effect estimates. Our findings provide new insight into the genetic architecture of lipid traits and highlight the importance of conducting genetic studies in diverse populations in the era of precision medicine
Genetic discovery and risk characterization in type 2 diabetes across diverse populations
Genomic discovery and characterization of risk loci for type 2 diabetes (T2D) have been conducted primarily in individuals of European ancestry. We conducted a multiethnic genome-wide association study of T2D among 53,102 cases and 193,679 control subjects from African, Hispanic, Asian, Native Hawaiian, and European population groups in the Population Architecture Genomics and Epidemiology (PAGE) and Diabetes Genetics Replication and Meta-analysis (DIAGRAM) Consortia. In individuals of African ancestry, we discovered a risk variant in the TGFB1 gene (rs11466334, risk allele frequency (RAF) = 6.8%, odds ratio [OR] = 1.27, p = 2.06 × 10−8), which replicated in independent studies of African ancestry (p = 6.26 × 10−23). We identified a multiethnic risk variant in the BACE2 gene (rs13052926, RAF = 14.1%, OR = 1.08, p = 5.75 × 10−9), which also replicated in independent studies (p = 3.45 × 10−4). We also observed a significant difference in the performance of a multiethnic genetic risk score (GRS) across population groups (pheterogeneity = 3.85 × 10−20). Comparing individuals in the top GRS risk category (40%–60%), the OR was highest in Asians (OR = 3.08) and European (OR = 2.94) ancestry populations, followed by Hispanic (OR = 2.39), Native Hawaiian (OR = 2.02), and African ancestry (OR = 1.57) populations. These findings underscore the importance of genetic discovery and risk characterization in diverse populations and the urgent need to further increase representation of non-European ancestry individuals in genetics research to improve genetic-based risk prediction across populations
Genetic analyses of diverse populations improves discovery for complex traits
Genome-wide association studies (GWAS) have laid the foundation for investigations into the biology of complex traits, drug development and clinical guidelines. However, the majority of discovery efforts are based on data from populations of European ancestry1–3. In light of the differential genetic architecture that is known to exist between populations, bias in representation can exacerbate existing disease and healthcare disparities. Critical variants may be missed if they have a low frequency or are completely absent in European populations, especially as the field shifts its attention towards rare variants, which are more likely to be population-specific4–10. Additionally, effect sizes and their derived risk prediction scores derived in one population may not accurately extrapolate to other populations11,12. Here we demonstrate the value of diverse, multi-ethnic participants in large-scale genomic studies. The Population Architecture using Genomics and Epidemiology (PAGE) study conducted a GWAS of 26 clinical and behavioural phenotypes in 49,839 non-European individuals. Using strategies tailored for analysis of multi-ethnic and admixed populations, we describe a framework for analysing diverse populations, identify 27 novel loci and 38 secondary signals at known loci, as well as replicate 1,444 GWAS catalogue associations across these traits. Our data show evidence of effect-size heterogeneity across ancestries for published GWAS associations, substantial benefits for fine-mapping using diverse cohorts and insights into clinical implications. In the United States—where minority populations have a disproportionately higher burden of chronic conditions13—the lack of representation of diverse populations in genetic research will result in inequitable access to precision medicine for those with the highest burden of disease. We strongly advocate for continued, large genome-wide efforts in diverse populations to maximize genetic discovery and reduce health disparities. © 2019, The Author(s), under exclusive licence to Springer Nature Limited
Breast cancer risk factors and survival by tumor subtype: pooled analyses from the breast cancer association consortium
Background: It is not known whether modifiable lifestyle factors that predict survival after invasive breast cancer differ by subtype.Methods: We analyzed data for 121,435 women diagnosed with breast cancer from 67 studies in the Breast Cancer Association Consortium with 16,890 deaths (8,554 breast cancer specific) over 10 years. Cox regression was used to estimate associations between risk factors and 10-year all-cause mortality and breast cancer-specific mortality overall, by estrogen receptor (ER) status, and by intrinsic-like subtype.Results: There was no evidence of heterogeneous associations between risk factors and mortality by subtype (P-adj > 0.30). The strongest associations were between all-cause mortality and BMI >= 30 versus 18.5-25 kg/m(2) [HR (95% confidence interval (CI), 1.19 (1.06-1.34)]; current versus never smoking [1.37 (1.27-1.47)], high versus low physical activity [0.43 (0.21-0.86)], age >= 30 years versus 0-= 10 years since last full-term birth [1.31 (1.11-1.55)]; ever versus never use of oral contraceptives [0.91 (0.87-0.96)]; ever versus never use of menopausal hormone therapy, including current estrogen-progestin therapy [0.61 (0.54-0.69)]. Similar associations with breast cancer mortality were weaker; for example, 1.11 (1.02-1.21) for current versus never smoking.Conclusions: We confirm associations between modifiable lifestyle factors and 10-year all-cause mortality. There was no strong evidence that associations differed by ER status or intrinsic-like subtype.Impact: Given the large dataset and lack of evidence that associations between modifiable risk factors and 10-year mortality differed by subtype, these associations could be cautiously used in prognostication models to inform patient-centered care.Surgical oncolog
Late health effects of radiation exposure: New statistical, epidemiological, and biological approaches.
Abstract Purpose: The 2012 Conference on Radiation and Health in Kennebunkport, Maine, USA, brought together epidemiologists, statisticians, basic scientists, and clinical scientists interested in the health effects of radiation exposure due to medical, diagnostic, occupational, and non-medical sources, to review the current status of epidemiologic and clinical research on radiation exposure in relation to risk of breast, thyroid cancer, and leukemia, cardiopulmonary events, and other late effects. Topics discussed included synergy between radiation exposure and genetic background; late effects of radiation therapy in childhood cancer survivors and several other medically exposed cohorts; leukemia risk seen in Russian and Chernobyl studies, and leukemia risk from computed tomography scans in childhood. Results and conclusions: This report summarizes the presentations at the meeting and discusses their significance in light of earlier studies and of other ongoing research