3,926 research outputs found

    Interaction region local correction for the Large Hadron Collider

    Get PDF
    The performance of the Large Hadron Collider (LHC) at collision energy is limited by the field quality of the interaction region (IR) quadrupoles and dipoles. In this paper we study the impact of the expected field errors of these magnets on the dynamic aperture (DA). Since the betatron phase advance is well defined for magnets that are located in regions of large beta functions, local corrections can be very effective and robust. We compare possible compensation schemes and propose a corrector layout to meet the required DA performance. (7 refs)

    Stability of tearing modes in tokamak plasmas

    Full text link
    The stability properties of m {ge} 2 tearing instabilities in tokamak plasmas are analyzed. A boundary layer theory is used to find asymptotic solutions to the ideal external kink equation which are used to obtain a simple analytic expression for the tearing instability parameter {Delta}{prime}. This calculation generalizes previous work on this topic by considering more general toroidal equilibria (however, toroidal coupling effects are ignored). Constructions of {Delta}{prime} are obtained for plasmas with finite beta and for islands that have nonzero width. A simple heuristic estimate is given for the value of the saturated island width when the instability criterion is violated. A connection is made between the calculation of the asymptotic matching parameter in the finite beta and island width case to the nonlinear analog of the Glasser effect

    RELICS: The Reionization Lensing Cluster Survey and the Brightest High-z Galaxies

    Get PDF
    Massive foreground galaxy clusters magnify and distort the light of objects behind them, permitting a view into both the extremely distant and intrinsically faint galaxy populations. We present here the z ~ 6-8 candidate high-redshift galaxies from the Reionization Lensing Cluster Survey (RELICS), a Hubble and Spitzer Space Telescope survey of 41 massive galaxy clusters spanning an area of ≈200 arcmin². These clusters were selected to be excellent lenses, and we find similar high-redshift sample sizes and magnitude distributions as the Cluster Lensing And Supernova survey with Hubble (CLASH). We discover 257, 57, and eight candidate galaxies at z ~ 6, 7, and 8 respectively, (322 in total). The observed (lensed) magnitudes of the z ~ 6 candidates are as bright as AB mag ~23, making them among the brightest known at these redshifts, comparable with discoveries from much wider, blank-field surveys. RELICS demonstrates the efficiency of using strong gravitational lenses to produce high-redshift samples in the epoch of reionization. These brightly observed galaxies are excellent targets for follow-up study with current and future observatories, including the James Webb Space Telescope

    RELICS: spectroscopy of gravitationally lensed z ≃ 2 reionization-era analogues and implications for C III] detections at z > 6

    Get PDF
    Recent observations have revealed the presence of strong C III] emission (EWCIII]>20 Å) in z > 6 galaxies, the origin of which remains unclear. In an effort to understand the nature of these line emitters, we have initiated a survey targeting C III] emission in gravitationally lensed reionization-era analogues identified in Hubble Space Telescope imaging of clusters from the Reionization Lensing Cluster Survey. Here, we report initial results on four galaxies selected to have low stellar masses (2–8 × 107 M⊙) and J125-band flux excesses indicative of intense [O III] + H β emission (EW[OIII]+Hβ = 500–2000 Å), similar to what has been observed at z > 6. We detect C III] emission in three of the four sources, with the C III] EW reaching values seen in the reionization era (EWCIII]≃17−22 Å) in the two sources with the strongest optical line emission (EW[OIII]+Hβ≃2000 Å). We have obtained a Magellan/FIRE (Folded-port InfraRed Echellette) near-infrared spectrum of the strongest C III] emitter in our sample, revealing gas that is both metal poor and highly ionized. Using photoionization models, we are able to simultaneously reproduce the intense C III] and optical line emission for extremely young (2–3 Myr) and metal-poor (0.06–0.08 Z⊙) stellar populations, as would be expected after a substantial upturn in the star formation rate of a low-mass galaxy. The sources in this survey are among the first for which C III] has been used as the primary means of redshift confirmation. We suggest that it should be possible to extend this approach to z > 6 with current facilities, using C III] to measure redshifts of objects with IRAC excesses indicating EW[OIII]+Hβ≃2000 Å, providing a method of spectroscopic confirmation independent of Ly α

    An improved measurement of muon antineutrino disappearance in MINOS

    Get PDF
    We report an improved measurement of muon anti-neutrino disappearance over a distance of 735km using the MINOS detectors and the Fermilab Main Injector neutrino beam in a muon anti-neutrino enhanced configuration. From a total exposure of 2.95e20 protons on target, of which 42% have not been previously analyzed, we make the most precise measurement of the anti-neutrino "atmospheric" delta-m squared = 2.62 +0.31/-0.28 (stat.) +/- 0.09 (syst.) and constrain the anti-neutrino atmospheric mixing angle >0.75 (90%CL). These values are in agreement with those measured for muon neutrinos, removing the tension reported previously.Comment: 5 pages, 4 figures. In submission to Phys.Rev.Let

    A Study of Muon Neutrino Disappearance Using the Fermilab Main Injector Neutrino Beam

    Get PDF
    We report the results of a search for muon-neutrino disappearance by the Main Injector Neutrino Oscillation Search. The experiment uses two detectors separated by 734 km to observe a beam of neutrinos created by the Neutrinos at the Main Injector facility at Fermi National Accelerator Laboratory. The data were collected in the first 282 days of beam operations and correspond to an exposure of 1.27e20 protons on target. Based on measurements in the Near Detector, in the absence of neutrino oscillations we expected 336 +/- 14 muon-neutrino charged-current interactions at the Far Detector but observed 215. This deficit of events corresponds to a significance of 5.2 standard deviations. The deficit is energy dependent and is consistent with two-flavor neutrino oscillations according to delta m-squared = 2.74e-3 +0.44/-0.26e-3 eV^2 and sin^2(2 theta) > 0.87 at 68% confidence level.Comment: In submission to Phys. Rev.

    Neutrino and Antineutrino Inclusive Charged-current Cross Section Measurements with the MINOS Near Detector

    Get PDF
    The energy dependence of the neutrino-iron and antineutrino-iron inclusive charged-current cross sections and their ratio have been measured using a high-statistics sample with the MINOS Near Detector exposed to the NuMI beam from the Main Injector at Fermilab. Neutrino and antineutrino fluxes were determined using a low hadronic energy subsample of charged-current events. We report measurements of neutrino-Fe (antineutrinoFe) cross section in the energy range 3-50 GeV (5-50 GeV) with precision of 2-8% (3-9%) and their ratio which is measured with precision 2-8%. The data set spans the region from low energy, where accurate measurements are sparse, up to the high-energy scaling region where the cross section is well understood.Comment: accepted by PR
    corecore