1,270 research outputs found

    A code to unfold scintillation spectrometer polyenergetic gamma photon experimental distributions

    Get PDF
    FORTRAN code to unfold sodium iodide scintillation spectrometer polyenergetic gamma photon experimental distribution

    BUR Kinase Selectively Regulates H3 K4 Trimethylation and H2B Ubiquitylation through Recruitment of the PAF Elongation Complex

    Get PDF
    Histone-lysine methylation is linked to transcriptional regulation and the control of epigenetic inheritance. Lysine residues can be mono-, di-, or trimethylated, and it has been suggested that each methylation state of a given lysine may impart a unique biological function [1 and 2]. In yeast, histone H3 lysine 4 (K4) is mono-, di-, and trimethylated by the Set1 histone methyltransferase [3 and 4]. Previous studies show that Set1 associates with RNA polymerase II and demarcates transcriptionally active genes with K4 trimethylation [5]. To determine whether K4 trimethylation might be selectively regulated, we screened a library of yeast deletion mutants associated with transcriptional regulation and chromatin function. We identified BUR2, a cyclin for the Bur1/2 (BUR) cyclin-dependent protein kinase, as a specific regulator of K4 trimethylation [ 6]. Surprisingly, BUR also regulated H2B monoubiquitylation, whereas other K4 methylation states and H3 lysine 79 (K79) methylation were unaffected. Synthetic genetic array (SGA) and transcription microarray analyses of a BUR2 mutant revealed that BUR is functionally similar to the PAF, Rad6, and Set1 complexes. These data suggest that BUR acts upstream of these factors to control their function. In support, we show that recruitment of the PAF elongation complex to genes is significantly impaired in a BUR2 deletion. Our data reveal a novel function for the BUR kinase in transcriptional regulation through the selective control of histone modifications

    Protein modifications in transcription elongation

    Get PDF
    Posttranslational modifications (PTMs) of proteins play essential roles in regulating signaling, protein-protein modifications and subcellular localization. In this review, we focus on posttranslational modification of histones and RNA polymerase II (RNAPII) and their roles in gene transcription. A survey of the basic features of PTMs is provided followed by a more detailed account of how PTMs on histones and RNAPII regulate transcription in the model organism Saccharomyces cerevisiae. We emphasize the interconnections between histone and RNAPII PTMs and speculate upon the larger role PTMs have in regulating protein function in the cell

    Histone H3K36 methylation regulates pre-mRNA splicing in Saccharomyces cerevisiae

    Get PDF
    Co-transcriptional splicing takes place in the context of a highly dynamic chromatin architecture, yet the role of chromatin restructuring in coordinating transcription with RNA splicing has not been fully resolved. To further define the contribution of histone modifications to pre-mRNA splicing in Saccharomyces cerevisiae, we probed a library of histone point mutants using a reporter to monitor pre-mRNA splicing. We found that mutation of H3 lysine 36 (H3K36) – a residue methylated by Set2 during transcription elongation – exhibited phenotypes similar to those of pre-mRNA splicing mutants. We identified genetic interactions between genes encoding RNA splicing factors and genes encoding the H3K36 methyltransferase Set2 and the demethylase Jhd1 as well as point mutations of H3K36 that block methylation. Consistent with the genetic interactions, deletion of SET2, mutations modifying the catalytic activity of Set2 or H3K36 point mutations significantly altered expression of our reporter and reduced splicing of endogenous introns. These effects were dependent on the association of Set2 with RNA polymerase II and H3K36 dimethylation. Additionally, we found that deletion of SET2 reduces the association of the U2 and U5 snRNPs with chromatin. Thus, our study provides the first evidence that H3K36 methylation plays a role in co-transcriptional RNA splicing in yeast

    Hormone-dependent, CARM1-directed, arginine-specific methylation of histone H3 on a steroid-regulated promoter

    Get PDF
    AbstractActivation of gene transcription involves chromatin remodeling by coactivator proteins that are recruited by DNA-bound transcription factors. Local modification of chromatin structure at specific gene promoters by ATP-dependent processes and by posttranslational modifications of histone N-terminal tails provides access to RNA polymerase II and its accompanying transcription initiation complex [1, 2]. While the roles of lysine acetylation, serine phosphorylation, and lysine methylation of histones in chromatin remodeling are beginning to emerge [2–5], low levels of arginine methylation of histones have only recently been documented [4, 6–9], and its physiological role is unknown. The coactivator CARM1 methylates histone H3 at Arg17 and Arg26 in vitro [7] and cooperates synergistically with p160-type coactivators (e.g., GRIP1, SRC-1, ACTR) and coactivators with histone acetyltransferase activity (e.g., p300, CBP) to enhance gene activation by steroid and nuclear hormone receptors (NR) in transient transfection assays [10, 11]. In the current study, CARM1 cooperated with GRIP1 to enhance steroid hormone-dependent activation of stably integrated mouse mammary tumor virus (MMTV) promoters, and this coactivator function required the methyltransferase activity of CARM1. Chromatin immunoprecipitation assays and immunofluorescence studies indicated that CARM1 and the CARM1-methylated form of histone H3 specifically associated with a large tandem array of MMTV promoters in a hormone-dependent manner. Thus, arginine-specific histone methylation by CARM1 is an important part of the transcriptional activation process

    Casein Kinase II Phosphorylation of Spt6 Enforces Transcriptional Fidelity by Maintaining Spn1-Spt6 Interaction

    Get PDF
    Spt6 is a histone chaperone that associates with RNA polymerase II and deposits nucleosomes in the wake of transcription. Although Spt6 has an essential function in nucleosome deposition, it is not known whether this function is influenced by post-translational modification. Here, we report that casein kinase II (CKII) phosphorylation of Spt6 is required for nucleosome occupancy at the 5' ends of genes to prevent aberrant antisense transcription and enforce transcriptional directionality. Mechanistically, we show that CKII phosphorylation of Spt6 promotes the interaction of Spt6 with Spn1, a binding partner required for chromatin reassembly and full recruitment of Spt6 to genes. Our study defines a function for CKII phosphorylation in transcription and highlights the importance of post-translational modification in histone chaperone function
    • …
    corecore