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Summary

Histone-lysine methylation is linked to transcriptional
regulation and the control of epigenetic inheritance.
Lysine residues can be mono-, di-, or trimethylated,
and it has been suggested that each methylation state
of a given lysine may impart a unique biological
function [1, 2]. In yeast, histone H3 lysine 4 (K4) is
mono-, di-, and trimethylated by the Set1 histone
methyltransferase [3, 4]. Previous studies show that
Set1 associates with RNA polymerase Il and demar-
cates transcriptionally active genes with K4 trimethyl-
ation [5]. To determine whether K4 trimethylation
might be selectively regulated, we screened a library
of yeast deletion mutants associated with transcrip-
tional regulation and chromatin function. We iden-
tified BUR2, a cyclin for the Bur1/2 (BUR) cyclin-
dependent protein kinase, as a specific regulator of
K4 trimethylation [6]. Surprisingly, BUR also regu-
lated H2B monoubiquitylation, whereas other K4
methylation states and H3 lysine 79 (K79) methylation
were unaffected. Synthetic genetic array (SGA) and
transcription microarray analyses of a BUR2 mutant
revealed that BUR is functionally similar to the PAF,
Rad6, and Set1 complexes. These data suggest that
BUR acts upstream of these factors to control their
function. In support, we show that recruitment of the
PAF elongation complex to genes is significantly im-
paired in a BUR2 deletion. Our data reveal a novel
function for the BUR kinase in transcriptional regula-
tion through the selective control of histone modifica-
tions.

Results and Discussion

In an attempt to understand how K4 trimethylation is
regulated, we carried out Western analyses for K4 tri-
methylation on extracts from 384 different yeast strains,
each containing a unique gene deletion. The product of
each deleted gene is involved in some aspect of tran-
scription or chromatin function (N.J.K. and J.F.G., unpub-
lished data). We reasoned that factors influencing K4
trimethylation would most likely be involved in some
aspect of transcription or chromatin regulation because
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this modification is associated with actively transcrib-
ing genes [5, 7]. As shown in Figure 1A, we identified a
number of factors previously characterized as global
regulators of K4 methylation, including members of the
Set1 methyltransferase complex (COMPASS), the PAF
elongation complex, and the Rad6/Bre1 H2B ubiqui-
tylation complex [8-12]. Surprisingly, we also identified
bur2 deletion (bur2A) as a mutation causing signifi-
cantly decreased K4 trimethylation (Figure 1A). Bur2 is
a cyclin regulatory subunit for the essential Bur1 cylin-
dependent kinase (cdk), and this protein kinase com-
plex is known to regulate transcription elongation [6,
13, 14]. However, the mechanism by which the BUR
kinase complex functions to regulate transcription
elongation is not known.

Because histone lysine residues can be mono-, di-,
or trimethylated, we next characterized whether the
bur2A mutant affected any of the other known K4 meth-
ylation states. Although initial studies revealed a partial
decrease in the K4 mono- and dimethylation forms
based on the loading of equal amounts of WCEs, it be-
came apparent that H3 levels were also reduced in the
bur2A mutant (see Figure S1). Although it is unclear
why histone levels in the bur2A are lower, this reduction
does not appear to be caused by a generalized defect
in transcription, as determined by microarray studies
(see http://www.utoronto.ca/greenblattlab/BUR.xls), nor
does it appear to be a global defect in protein transla-
tion because the protein levels of other factors exam-
ined in the bur2A mutant were not affected (Figure 2C
and data not shown). We therefore normalized the
amount of protein loaded in our Western analyses to
the levels of H3. As shown in Figure 1B, we found that
the BUR2 deletion nearly abolished K4 trimethylation.
However, this deletion did not affect the mono- or di-
methylation states of K4. In addition to K4 methylation,
we also examined the effects of the bur2A on other his-
tone modifications. As shown, the loss of Bur2 did not
affect the levels of K79 di- or trimethylation or other
sites of histone acetylation, suggesting that the effects
of bur2A are highly specific for the trimethylation state
of K4 (Figure 1B and data not shown). Importantly, the
loss of K4 trimethylation could be restored with ectopi-
cally expressed BUR2 (Figure 1C). As a comparison, we
examined these same modifications in a rad6A strain.
We did not detect any of the K4 or K79 methyl states
in this mutant (Figure 1B). These results show that the
BUR kinase selectively regulates K4 trimethylation but
not K4 mono- or dimethylation. These data support the
idea that the K4-trimethylation state may have a unique
role in transcription because its regulation can be un-
coupled from the mono- and dimethylation states [5,
15, 16].

The function of Bur2 is to regulate efficient Bur1 ki-
nase activity. Because Burl deletion is inviable, yet
bur2A cells are viable (albeit with a slow growth pheno-
type), we wanted to verify that the effects on K4 tri-
methylation were due to downregulated kinase activity
of Bur1 and not to any other potential function of Bur2.
To determine this, we initially analyzed bur2A cells
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were determined to be partially reduced as

compared to wt (see Figure S1). Thus, wt and bur2A WCEs were normalized such that the histone H3 levels were equivalent.
(C) Exogenous expression of BUR2 or BUR1 rescues the loss of K4 trimethylation in bur2A. Normalized WCEs from wt or bur2A cells
transformed with empty vector or with a BUR2 or BUR1 expression vector as indicated were immunoblotted as described above with the

specified antibody.

(D) A bur1 temperature-sensitive allele loses K4 trimethylation. Normalized WCEs from either wt (GY312) or bur1-1 (GY114) grown at the
semipermissive temperature 30°C were resolved as described above and immunoblotted with the indicated antibody.

transformed with a BUR1-containing expression vector.
A previous study had shown that overexpression of a
wild-type BURT1 allele in a bur2A strain partially rescues
the slow growth phenotype of the mutant, thus showing
that the major, if not only, role of Bur2 is to regulate the
kinase activity of Bur1 [6]. Consistent with this observa-
tion, overexpression of BURT1 in the bur2 deletion mu-
tant strain resulted in a significant restoration of K4 tri-
methylation (Figure 1C). Independently, we analyzed
the levels of K4 trimethylation in a temperature-sensi-
tive bur1-1 mutant strain grown at a semipermissive
temperature that does not completely inactivate the ki-
nase activity [17]. Analysis of histone modifications in
this strain revealed that although still present, K4 tri-
methylation levels were significantly reduced as com-
pared to its wild-type counterpart (Figure 1D). This ef-
fect again was specific for K4 trimethylation because
K4 dimethylation and K79 methylation, as well as H3
acetyl K9 levels (data not shown), were not affected
(Figure 1D). To confirm that the effects seen on K4 tri-
methylation in the bur2A strain were not attributable to
deficiencies in growth, such as defects in cell-cycle
progression, we analyzed logarithmically growing cells
by phase-contrast microscopy. Compared to wild-type
cells, the bur2A cells had no obvious defect in cell size
or in the number of unbudded versus budded cells
(data not shown). Furthermore, we synchronized wild-
type cells with nocodazole treatment and then analyzed
the levels of both K4 trimethylation and H2B ubiquityla-
tion over time after release from the arrest. Again, we
did not see any evidence that K4 trimethylation or H2B
ubiquitylation were regulated in a cell-cycle-dependent
fashion (data not shown), thus suggesting that the ef-
fects on K4 trimethylation in the bur2 mutant are not
due to altered cell-cycle progression. These data firmly
establish that one function of the BUR kinase is to spe-

cifically regulate global K4 trimethylation levels. Impor-
tantly, this is the first factor identified outside of the
COMPASS complex that selectively controls a specific
K4 methyl state and separates the regulation of K4 and
K79 methylation from one another [18, 19].

Histone H2B ubiquitylation is a known prerequisite
for the establishment of both K4 and K79 methylation.
Deletion of factors such as the ubiquitin E2 conjugating
enzyme Rad6, the E3 ligase Brel, or members of the
PAF elongation complex results in the loss of H2B ubig-
uitylation and leads to near abolishment of both K4 and
K79 methylation [8, 10-12, 20, 21]. To determine if a
loss of Bur2 would affect H2B ubiquitylation, we de-
leted BURZ2 in a strain that carries a single copy of H2B
that is N-terminally Flag epitope tagged. Surprisingly,
the bur2A strain had significantly less ubiquitylated
H2B as compared to its wild-type counterpart strain
(Figure 2A). Furthermore, this defect in H2B ubiquityla-
tion could be rescued by expressing exogenous BUR2,
thus showing that the loss of H2B ubiquitylation was
due solely to the loss of Bur2 (Figure 2B). We also com-
pared the effects of bur2A with a rad6é mutant, and,
consistent with work by others, we found that rad6A
completely abolished ubiquitylated H2B (data not
shown) [9, 10].

We next wondered whether the loss of H2B ubiqui-
tylation and K4 trimethylation might be due to down-
regulation of the machineries that mediate these modi-
fications. We found, however, that the loss of H2B
ubiquitylation could not be explained by decreased ex-
pression of factors known to regulate H2B ubiquityla-
tion, such as Rad6, Rtf1, or Leo1, because deletion of
Bur2 in yeast strains containing these factors TAP
tagged did not show any decreased protein levels (Fig-
ure 2C). We also confirmed that Bre1 protein levels and
the protein levels of two members of the COMPASS
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Figure 2. BUR Regulates Rad6-Mediated H2B Monoubiquitylation

(A) Increasing cell numbers of asynchronous, logarithmically grow-
ing wt (YZS276) or bur2-deleted cells (YNLOO1) were pelleted, re-
suspended in SDS-PAGE loading buffer, and boiled. Samples were
resolved on a 15% SDS-PAGE, transferred to PVDF membrane, and
immunoblotted with anti-Flag antibody. The upper arrow (ubH2B)
denotes the monoubiquitylated form of H2B, whereas the lower
arrow (H2B) shows the Flag-H2B levels.

(B) BUR2 expression rescues the H2B ubiquitylation defect in
bur2A. WCEs from wt (YZS276) or bur2-deleted cells (YNL0O1),
transformed with either an empty vector or BUR2 expression vec-
tor, were resolved on an SDS-PAGE gel and immunoblotted with
the anti-Flag antibody.

(C) Factors that regulate H2B ubiquitylation are not downregulated.
50 g of WCE from Rad6-TAP or Rtf1-TAP strains containing a bur2
deletion were resolved by 10% SDS-PAGE, transferred to PVDF,
and immunoblotted with the indicated antibodies. The anti-G6PDH
and anti-Pol Il (Santa Cruz, sc8952) panels are representative im-
munoblots taken from extracts of the Rad6-TAP background. In
addition to the above, we found that the BUR2 deletion did not
change the protein levels of Set1 complex members that were TAP
tagged (not shown).

complex, Cps40 and Cps60, were not affected in bur2A
(data not shown). Furthermore, microarray analysis of
gene expression in a bur2 deletion mutant revealed that

the mRNA of factors known to affect H2B ubiquitylation
and K4 methylation, such as components of the Rad6,
PAF, and Set1 complexes, were unaffected (see http://
www.utoronto.ca/greenblattlab/BUR.xls). These results
are surprising because to date, factors that have been
shown to regulate H2B ubiquitylation also affect the
levels of both K4 and K79 methylation. Thus, the data
show the ability to uncouple the absolute levels of H2B
ubiquitylation from the individual methyl states of K4
and K79.

Recent studies have shown that the PAF complex
controls H2B ubiquitylation, at least in part, through its
ability to recruit the E2-ubiquitin-conjugating enzyme
Rad6, and its E3 ligase, Bre1, to Pol Il [11, 21]. To deter-
mine whether bur2A affected PAF-complex recruitment
to genes, we performed chromatin immunoprecipita-
tion (ChIP) to monitor Rtf1 association with the PMA1
gene by using yeast strains carrying RTF1 TAP tagged
or a derivative strain also deleted for BUR2. Although
we detected significant enrichment of Rtf1 on the pro-
moter and entire open reading frame (ORF) of PMAT,
this enrichment was dramatically reduced in a bur2A
strain (Figure 3B). The loss of Rtf1 recruitment was not
due to an effect on the amount of Rtf1 protein in the
bur2A (see Figure 2C) nor was it specific for only Rtf1.
Strains carrying Leo1 TAP tagged or a derivative strain
with BUR2 deleted also showed similar results (data
not shown). We also deleted CTK17, as a control, in
the Rtf1-TAP strain and monitored PAF recruitment.
Whereas with bur2A we observed a significant reduc-
tion in Rtf1 recruitment to PMA1, ctk1A had either no
affect (in the promoter) or marginally reduced Rtf1 re-
cruitment (within the ORF) (Figure 3B), which is consis-
tent with work by others [22]. Similar to results shown
for the PMA1 gene, we found PAF reduction on other
genes we examined in bur2A (Figure S2 and data not
shown). These results demonstrate that the decreased
PAF recruitment to genes in the bur2 deletion mutant is
specific to BUR function and is not shared with another
kinase complex (i.e., the Ctk1-containing CTDK-I com-
plex) that also regulates transcription elongation.

The BUR kinase complex plays a critical but as yet
undefined role in the regulation of transcription elonga-
tion. Studies have found that the BUR complex can
phosphorylate the C-terminal domain (CTD) of the
largest subunit of Pol Il in vitro with little substrate pref-
erence for either the serine 2 or serine 5 position within
the heptapeptad repeat sequence [13, 14]. However,
in vivo BUR does not appear to be a source of CTD
kinase activity [13]. Because PAF complex is known to
travel with the elongating Pol Il complex, we deter-
mined whether the Pol Il distribution on the PMA1 gene
was altered between wild-type and bur2A cells as a
means for explaining the decreased PAF recruitment.
Using ChIP to monitor Pol Il localization, we found no
change between wild-type and bur2A cells in the den-
sity or distribution of Pol Il along the entire PMA1 gene
(Figure 3C). We also analyzed Pol Il distribution in a
ctk1A and found deleting this kinase also does not af-
fect the distribution of Pol Il on genes, which is consis-
tent with other studies (Figure 3C) [22, 23]. To confirm
that bur2A did not affect the Pol Il CTD serine 5 phos-
phorylation state, we immunoblotted wild-type and
bur2A whole-cell extracts with an antibody that speci-
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Figure 3. BUR Regulates PAF-Elongation-
Complex Association to Genes

(A) Schematic of the PMAT locus and the rel-
ative location of PCR primers used in this
study.

(B) Chromatin immunoprecipitation (ChIP)
monitoring the localization of the Rtf1-TAP
subunit of the PAF complex in wt, bur2A, or
ckt1A backgrounds. Asterisks denote the lo-

ctki4 cation of an internal control band amplified

by PCR primers specific to a region of chro-
mosome-V-lacking open-reading frames. Data
were normalized as described in the Supple-
mental Experimental Procedures. Error bars
represent the SEM of three independent rep-
licates.

(C) Same as in (B) except strains used were
wt, bur2A, or ctk1A in the BY4741 back-
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ground. RNA polymerase Il was monitored
with the 8WG16 antibody; similar results
were obtained with an anti-N-terminal Rpb1
antibody (Santa Cruz, sc25758) (not shown).
Error bars are the SEM of three indepen-
dent replicates.
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fically recognizes the Pol Il CTD phosphorylated at the
serine 5 position. bur2A did not affect the global levels
of CTD serine 5 phosphorylation, nor did it affect the
amount or distribution of serine 5 phosphorylated Pol
Il on the PMA1 gene as determined by ChIP (Figure 2C
and data not shown). Because Ctk1 is the sole serine 2
CTD kinase in yeast, these data reveal that the loss
of PAF complex recruitment is not due to generalized
defects in Pol Il transcription elongation or Pol Il CTD
serine 2 or serine 5 phosphorylation [24]. These data
therefore indicate that at least one function of the BUR
complex in transcription elongation is to regulate re-
cruitment of the PAF complex to genes.

Genes encoding proteins in the same functionally
distinct pathway should have similar effects on gene
expression and similar sets of synthetic genetic in-
teractions. To further demonstrate that BUR kinase is
functionally linked to histone H2B ubiquitylation and K4
trimethylation, we first used automated synthetic ge-
netic array (SGA) analysis. Nat® strains harboring indivi-
dual gene deletions of nonessential components of the
Rad6é (RAD6, BRET1), Pafl (RTF1, PAF1), COMPASS
(SWD1, SWD3), and BUR (BUR2) complexes were gen-
erated and crossed to a set of viable deletion strains
selected for their involvement in gene expression, and
the growth of resulting double mutant strains was ana-
lyzed (data not shown). Similar sets of genetic interac-
tions were obtained for rad6A, bre1A, rtf1A, pafiA,
swd1A, swd3A, and bur2A, a result consistent with all

fi@ﬂ 1

four complexes being involved in the same functional
pathway (Figure 4A). These included genetic interac-
tions with the transcriptional elongation factors DST1,
SPT4, Elongator (ELP1, ELP2, ELP3, ELP4, ELP6), as
well as with nonessential components of the 26S pro-
teasome (RPN4, RPN10, PRE9, SEM1, UBP6), which
has been recently implicated in histone H2B ubiquityla-
tion by Rad6é and H3 methylation via COMPASS [25-
31]. Synthetic growth defects were also observed with
RTT103, a component of the transcriptional termination
complex, Torpedo, and the CTDK-I kinase [32-34]. The
fact that the Rad6, Paft, and COMPASS complexes
share similar sets of genetic interactions with BUR2
strongly supports the notion that all are working to reg-
ulate a similar process in vivo.

To further characterize the relationship between BUR
and these other complexes, we used DNA microarrays
to analyze gene expression in strains containing dele-
tions of components of the Rad6 (RAD6, BRE1, LGE1),
COMPASS (SDCT), and PAF1 (CTR9, CDC73) com-
plexes as well as bur2A (raw microarray data at http://
www.utoronto.ca/greenblattlab/BUR.xIs). Pearson cor-
relation coefficients were calculated for each pair of de-
letions, and the strains organized by 2D hierarchical
clustering according to the similarities of their effects
on gene expression (Figure 4B). As a control, we also
analyzed gene expression data generated from dele-
tions of the Swr1 chromatin remodeling complex
(SWR1, SWC2, SWC3, SWC5) as well as from deletion
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of the histone H2A variant HTZ1. Swr1 is a member
of the Snf2 family of ATPases, and the Swr1 complex
incorporates the histone H2A variant, Htz1, into chro-
matin [35-37]. As was observed with our genetic analy-
ses, the gene expression profiles of strains containing
deletions of components of the Rad6, Paf1, and COM-
PASS complexes were very similar to each other as well
as with the profile generated from a BUR2 deletion (Fig-
ure 4B). In contrast, HTZ1, SWR1, SWC2, SWC3, and
SWCS5 clustered next to each other and were distinct
from BUR2, CTR9, CDC73, LGE1, BRE1, RAD6, and
SDCT1 in this gene-expression analysis. Microarray ex-
periments also have been conducted on over 400 other
strains containing individual deletions of genes impli-
cated in some aspect of transcription or chromatin
function (N.J.K., T.R.H., and J.F.G., unpublished data).
The clustering of this larger data set (not shown) also
reflects the data represented in Figure 4B, in which BUR2
clustered next to components of the Rad6, Paf1l, and
COMPASS complexes. Therefore, both the genetic and
the gene-expression data suggest that all four com-
plexes are functionally similar, and these data would
argue strongly that the BUR, Rad6, PAF, and COMPASS
complexes are in the same genetic pathway.
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Figure 4. Synthetic Genetic Interactions for
PAF1, RTF1, BUR2, SWD1, SWD3, RADS,
and BRE1

(A) SGA technology was used to cross Nat"
strains harboring individual deletions of
genes encoding Pafil, Rtf1, Bur2, Swdi,
Swd3, Rad6, and Brel with a transcription-
targeted array of deletion strains to create
sets of Nat" Kan" haploid double mutants.
Growth rates were assessed by automated
image analysis of colony size. Lines connect
genes with synthetic genetic interactions.
The lengths of lines and proximity of boxes
in this diagram are unrelated to the strengths
of the indicated synthetic genetic interac-
tions.

(B) Microarray analysis of gene expression
was performed for the indicated deletion
strains. Pearson correlation coefficients were
then calculated for each pair of deletions,
and the deletions were organized by 2D hier-
archical clustering.

In this study, we have defined a novel function for the
BUR kinase complex via its ability to selectively regu-
late PAF recruitment to genes, histone K4 trimethyla-
tion, and H2B ubiquitylation. Furthermore, we show
that BUR uncouples the regulation of K4 trimethylation
and H2B ubiquitylation from the control of mono- and
dimethylation at K4 and also from K79 methylation. To
our knowledge, this is the first demonstration that the
different methyl states of a single histone lysine residue
can be independently regulated by factors existing out-
side of the target lysine’s HMT complex. These data
also suggest that the K79 methylation levels in yeast
are not coupled directly to the absolute levels of his-
tone H2B ubiquitylation per se because in the bur2A, in
which there is a significant decrease in H2B ubiquityla-
tion, no effect on K79 di- and trimethylation was ob-
served. Such data may seem difficult to reconcile given
the known requirement of Rtf1 and H2B ubiquitylation
for K79 methylation; however, recent reports have
shown that the recruitment of Dot1 to coding regions
of genes is largely independent of Rtf1, whereas Set1
recruitment is dependent on Rtf1 [7, 8, 20]. Such find-
ings suggest that these two HMTs are regulated by in-
dependent mechanisms and, therefore, might be af-
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fected differently by the reduction of PAF and H2B
ubiquitylation on genes.

Our interpretation of the data presented here is that
low levels of H2B ubiquitylation are sufficient to trigger
wild-type levels of K4 mono- and dimethylation and
also K79 di- and trimethylation. This may be explained
by the proposed “wedge” model, which states that H2B
ubiquitylation would unfold chromatin to make con-
densed regions of chromatin accessible to the Set1 and
Dot1 enzymes [38]. However, additional events must
occur for Set1 to mediate K4 trimethylation. Because
Set1 recruitment to genes is dependent on PAF, one
explanation could be that PAF recruits a specific form
of COMPASS that selectively trimethylates. In this sce-
nario, an alternate form of the Set1 complex gains ac-
cess, in a H2B ubiquitylation-dependent manner, to
genes and mediates K4 mono- and dimethylation. A
second possibility could be that a COMPASS member
directly interacts with ubiquitylated H2B and this in-
teraction triggers the K4 trimethylating activity. Recent
reports show that the Spp1 subunit of COMPASS is re-
quired for K4 trimethylation [18, 19]. Thus, Spp1 may
directly interact with the ubiquitylated H2B tail, and as a
consequence, decreased H2B ubiquitylation would be
reflected in a selective loss of K4 trimethylation. Finally,
the Burl kinase may directly phosphorylate a COM-
PASS subunit to trigger K4 trimethylation. It is impor-
tant to distinguish that in scenarios one and three, the
wild-type levels of H2B ubiquitylation are coincident
with K4 trimethylation but are not the cause. It will be
intriguing to determine in future studies which, in any,
of these proposed models are correct.

Supplemental Data

Supplemental Data include two figures and Supplemental Experi-
mental Procedures and can be found with this article online at
http://www.current-biology.com/cgi/content/full/15/16/1487/DC1/.
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