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ABSTRACT

Co-transcriptional splicing takes place in the context of a highly dynamic chromatin architecture, yet the
role of chromatin restructuring in coordinating transcription with RNA splicing has not been fully resolved.
To further define the contribution of histone modifications to pre-mRNA splicing in Saccharomyces
cerevisiae, we probed a library of histone point mutants using a reporter to monitor pre-mRNA splicing. We
found that mutation of H3 lysine 36 (H3K36) - a residue methylated by Set2 during transcription
elongation - exhibited phenotypes similar to those of pre-mRNA splicing mutants. We identified genetic
interactions between genes encoding RNA splicing factors and genes encoding the H3K36
methyltransferase Set2 and the demethylase Jhd1 as well as point mutations of H3K36 that block
methylation. Consistent with the genetic interactions, deletion of SET2, mutations modifying the catalytic
activity of Set2 or H3K36 point mutations significantly altered expression of our reporter and reduced
splicing of endogenous introns. These effects were dependent on the association of Set2 with RNA
polymerase Il and H3K36 dimethylation. Additionally, we found that deletion of SET2 reduces the
association of the U2 and U5 snRNPs with chromatin. Thus, our study provides the first evidence that
H3K36 methylation plays a role in co-transcriptional RNA splicing in yeast.
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Introduction

The process of pre-mRNA splicing is carried out within the
spliceosome, a large and dynamic ribonucleoprotein. The spli-
ceosome is comprised of small nuclear ribonucleoprotein com-
plexes (snRNPs) that assemble on a pre-mRNA molecule in a
precise order through interactions with sequences in the
introns." The U1 snRNP binds to the 5’ splice site, followed by
ATP-dependent loading of the U2 snRNP onto the branch-
point sequence. The tri-snRNP (U4/U6eU5) joins next, and
subsequent ATP-dependent RNA helicase-mediated rearrange-
ments remove the Ul and U4 snRNPs and reorganize the
remaining snRNPs to promote the 2 catalytic steps of splicing.
In Saccharomyces cerevisiae, splicing takes place primarily dur-
ing RNA Polymerase IT (RNA Pol II) transcription®* and stud-
ies have revealed that snRNPs assemble onto the nascent pre-
mRNA co-transcriptionally.””

Mounting evidence supports a model in which pre-mRNA
splicing is tightly coordinated with transcription to ensure pre-
cise and efficient gene expression.'>'! The fact that pre-mRNA
splicing occurs cotemporally with RNA Pol II-dependent gene
transcription indicates that spliceosome assembly and

subsequent catalytic steps take place in the context of a
dynamic chromatin environment. There are currently 2 non-
mutually exclusive proposed mechanisms for coupling tran-
scription and RNA splicing. The first is a recruitment model in
which RNA Pol IT and/or transcription-related proteins, either
directly or indirectly, physically recruit splicing factors to the
nascent transcript leading to specific splicing outcomes.'®""
The second is a kinetic coupling model that explains how splic-
ing can be impacted by transcription elongation rates. The
splicing of a given intron is enhanced when the rate of elonga-
tion is slow because the splicing machinery has more time to
access the splice sites. Exon skipping can occur when elonga-
tion is fast, as there is less time for the splicing machinery to
assemble on the pre-mRNA.'*!!

Most S. cerevisiae genes do not contain more than one
intron, and thus extensive alternative splicing does not occur.
However, several recent reports show that the splicing effi-
ciency of specific subsets of transcripts changes in different
environmental conditions'> or when splicing-related proteins
are mutated.'>'* Mutations that alter transcription elongation
rates or treatment with drugs that affect transcription can
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change alternative splicing outcomes in metazoa'>>° and splic-

ing efficiency in yeast.>*"** For example, splicing of the DYN2
alternative splicing reporter pre-mRNA in S. cerevisiae changes
when transcription elongation is slowed using the small mole-
cules 6-Azauracil or mycophenolic acid, or by mutating the
RNA Pol II subunit Rpb2.?" A recent point mutation epistatic
miniarray profile (pE-MAP) paired with genome-wide splicing
microarray analysis of 53 RNA polymerase mutants in S. cerevi-
siae revealed that altering the rate of elongation can change the
efficiency of splicing; slow elongation enhances splicing, while
fast elongation reduces splicing efficiency.”* Thus any protein
that can alter RNA Pol II elongation rate has the potential to
regulate RNA splicing.

In the context of chromatin, histone tails undergo extensive
posttranslational modifications, such as lysine acetylation and
methylation, altering the structure of chromatin®>** and hence
access of RNA Pol II to the DNA template. Recent genome-
wide analysis in both metazoa® and in yeast*® reveal that the
presence of certain histone modifications differs between DNA
sequences encoding exons and those encoding introns, leading
to the emerging paradigm that histone modification can modu-
late RNA splicing.'" This paradigm is supported by several
recent studies showing that both histone H3 acetylation””*®
and histone H2B-K123 ubiquitination®*** enhance splicing
efficiency in yeast. Furthermore, several histone modifications
have recently been implicated in co-transcriptional recruitment
of splicing factors, providing evidence for the recruitment
model of coupling transcription with RNA splicing.'”!" For
example, histone H2B ubiquitination by the Brel E3 ubiquitin
ligase®” and Gen5 histone acetyltransferase activity””*® facilitate
splicing by recruiting splicing factors to splicing substrates in
yeast. In metazoa, depletion of SETD2, the chromatin modifica-
tion enzyme that tri- methylates H3K36 (see below), changes
alternative splicing patterns and both tri-methylated H3K4 and
tri-methylated H3K36 interact with splicing proteins to recruit
them during transcription.’’ > Thus, histone modifications
and the changing chromatin landscape constitute an exciting
frontier for splicing regulation that has yet to be fully explored.

Recently, large-scale studies have identified a potential role
for the Set2 methyltransferase in yeast RNA splicing.””*" Set2
methylates nucleosomal H3K36, and generates mono-, di-, and
tri-methylated forms.”® Studies show that Set2 is associated
with the elongating form of RNA Pol II and mediates
H3K36me2/me3 to recruit a number of chromatin-modifying
complexes (Rpd3S and Iswlb) that maintain a repressive chro-
matin environment that is resistant to pervasive transcription
in the coding regions of genes.”’** Although a number of stud-
ies have shown that the human homolog of Set2, SETD2, is
important for alternative splicing *">* and that H3K36 is essen-
tial for viability in drosophila,” the direct role of H3K36me3
and other methylation states (particularly H3K36me2) in both
canonical and alternative splicing has not been clearly
elucidated.

To identify novel regulators of RNA splicing in yeast, we
recently carried out a genome-wide screen using a fluorescent
reporter to monitor gene expression in a library of 4967 S. cere-
visiae deletion mutants. These studies suggested that deletion
of several transcription factors and histone modifiers may cause
a pre-mRNA splicing defect.** Here, we sought to further
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characterize the role of histone modification in RNA splicing.
Utilizing the reporter to probe for splicing defects in a library
consisting of hundreds of synthetic histone point mutants,*” we
identified several histone point mutations displaying splicing-
like defects. These defects also mimic those seen in deletion
mutants of specific histone modification- and chromatin
remodeling-enzymes, including set2A. We found that muta-
tions altering H3K36me have genetic interactions with genes
encoding RNA splicing factors and alter splicing efficiency of a
set of endogenous transcripts. Further work demonstrated that
changes in transcription elongation alone do not fully account
for changes in RNA splicing efficiency, and showed that dele-
tion of SET2 significantly reduces the association of snRNPs
with chromatin, supporting a model in which Set2/H3K36me
increases splicing efficiency by facilitating co-transcriptional
spliceosome assembly. Moreover, our work reveals for the first
time that different methylation states of H3K36 are important
for transcript-specific splicing.

Results

Screen of histone H3 and H4 point mutants for effects on
gene expression

We recently described pre-mRNA splicing-like phenotypes for
a number of deletion mutants of histone-modifying factors
with our gene expression reporter.** Briefly, our reporter results
in expression of the fluorescent proteins mCherry and GFP,
serving as a proxy for in vivo levels of reporter pre-mRNA and
spliced mRNA, respectively (Fig. 1E). Given the aforemen-
tioned findings, as well as the growing amount of work describ-
ing links between histone modifications and pre-mRNA
splicing, we analyzed a collection of 486 histone H3 and H4
substitution and deletion mutants with our reporter via high-
throughput flow cytometry.*> The resulting histone mutant
data were incorporated into the deletion collection dataset con-
sisting of nearly 5000 unique deletion mutants** and re-clus-
tered (raw data and processed data provided as Supporting
Data sets S1 and S2-S4, respectively). Our clustering analysis
pipeline vectorizes the data to compare the shape of the 2-
dimensional reporter data in a non-directed manner.** As with
the deletion collection, the majority of histone H3 and H4
mutants did not differ significantly from wild-type (Fig. S1).
Interestingly, a subset of histone point mutants clustered with
deletion mutants exhibiting characteristic red-shifts as a result
of an increase in the mCherry/GFP (unspliced/spliced) ratio
(Fig. 1; global clustering behavior depicted in Fig. S1), suggest-
ing a potential pre-mRNA splicing defect. It is important to
note that mCherry/GFP expression is affected by processes
other than pre-mRNA splicing. For instance we observe a red-
shift in mutants of nonsense mediated decay and green-shifts
in mutants of mRNA export and specific mRNA decay/path-
ways.** Therefore, orthogonal assays are necessary to confirm
the specific gene expression pathway(s) affected.

Of the histone mutants examined, point mutants at H3K36
(H3K36Q and H3K36R) clustered within a clade of primarily
chromatin modifier and transcription-related deletion mutants
(Fig. 1A top). The H3K36R mutant and the strain lacking the
H3K36 methyltransferase SET2 (set2A) cluster in the same
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Figure 1. Specific histone mutants phenocopy loss of functionally relevant gene expression factors. Gene expression reporter phenograph data from the collection of his-
tone point mutants were integrated with the deletion collection data set and hierarchically clustered with complete linkage and a centered absolute correlation similarity
metric, resulting in a small number of histone point mutants clustering with deletion mutants within gene expression pathways (A). Nodes are annotated with the colors
indicated in the legend. Global clustering behavior of the histone mutants is depicted in Fig. S1. Gene expression reporter phenograph overlays for deletion and histone
mutants of interest (B-D) are depicted. Mutants are shown in pseudo-color on the left and middle panels and overlaid onto a grayscale wild-type phenograph for compar-
ison. For the rightmost panel the phenograph for the deletion mutant (blue) and histone mutant (red) are overlaid to demonstrate similarity. The H3KtailR mutant is
H3K9,14,18,23R. Note: there are 2 vps72A strains in the deletion mutant collection. (E). Gene Expression reporter schematic. Expression is driven by the constitutive TDH3
promoter. The sequence features of the pre-mRNA are modeled based on the inefficiently spliced CYH2 gene. The intron is marked by the dashed lines. The mCherry ORF
is in frame with exon |, thus production of mCHerry results from mRNAs that have retained an intron. The GFP is in frame with exon 2 driving GFP expression only when

the intron is removed.

large red-shifted clade and have highly similar phenographs
(Fig. 1B). Interestingly, a strain with a deletion of a dubious
ORF (YJL169W), with sequence that overlaps the C-terminal
~120nts of the SET2 gene, also falls within this red-shifted
clade and has a similar phenograph to snu66A. It is currently
not known how this small C-terminal deletion impacts SET2
expression, but it inhibited splicing of the gene expression
reporter more than the full SET2 deletion. Additionally, the
H3K36Q mutant is even more severely red-shifted and clusters

with the pre-mRNA splicing deletion mutant snu66A*>*
(Fig. 1C). The clustering analysis of histone H3K36 mutants
and set2A with respect to pre-mRNA splicing defects suggests
that SET2/H3K36me is important for pre-mRNA splicing.

In addition to H3K36, we also found that the H3K9R, K14R,
K18R and K23R quadruple mutant (H3KtailR) mimicking a
constitutively deacetylated H3 tail, clusters with functionally
relevant chromatin-modifying and histone point mutants
(Fig. 1A bottom). Most striking is the similarity of this mutant



with the gen5A deletion (Fig. 1D). This similar reporter pheno-
graph and clustering behavior was expected, as Gen5 is known
to acetylate the tail of H3*® and contribute to co-transcriptional
spliceosome recruitment.””*® The YAF9 deletion mutant, also
clustering in this small clade, is a component of the SWR1
complex that replaces histone H2A (HTA1/HTA2) with H2A.Z
(HTZ1).* Additionally, Yaf9 is a component of the NuA4 his-
tone acetyltransferase complex, known to acetylate the N-ter-
minal lysines of H4,” consistent with the clustering behavior of
the 2 H4 mutants H4K16A and H4K12Q (Fig. 1A bottom).
Using our splicing reporter system, we were able to cluster spe-
cific histone modifier mutants with their respective histone
point mutants, thereby validating the sensitivity and specificity
observed with our reporter across a wide-range of gene expres-
sion mutants.**

Mutations that alter H3K36 methylation exhibit genetic
interactions with genes that encode splicing factors

Our gene expression reporter assay data point to a potential
role for Set2 and H3K36 methylation in pre-mRNA splicing
(Fig. 1). To further investigate this hypothesis, we tested for
genetic interactions between genes that encode RNA splicing
factors and SET2 or JHDI, which encodes a demethylase
enzyme that removes the mono- and di-methyl groups from
H3K36.”">* We generated double mutants that harbor both a
deletion of a splicing protein gene and a deletion of either SET2
or JHDI using SGA methodology.” Deletion of SET2 resulted
in reduced fitness in a strain lacking the IST3 gene that encodes
a component of the U2 snRNP>® (Fig. 2A top panel). This
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negative genetic interaction is exacerbated at higher tempera-
tures (37°C); the growth of the set2A ist3A double mutant is
slowed significantly when compared to the set2A or ist3A single
mutant strains. In addition, at 37°C SET?2 loss also reduced fit-
ness in a strain lacking ISY1 (Fig. 2A, lower panel), which enco-
des a component of the Prpl9 complex that functions during
the catalytic steps in splicing.””> In contrast, jhdIA displays
mild positive genetic interactions with both ist3A and isylA
(Fig. 2B). For example, the jhdIA isyIA strain grows better
than the jhdIA or isylA single mutant strains, and this suppres-
sion is more apparent at 37°C (Fig. 2B, lower panel). Interest-
ingly, deletion of the SNU66 splicing factor gene, which
encodes a component of the tri-snRNP,** displays opposite
genetic phenotypes. There is a positive genetic interaction
observed between set2A and snu66A at both 37°C (Fig. 2A,
lower panel) and 16°C (Fig. S2A). Neither deletion of SET2 or
JHDI had a considerable impact on the fitness of strains lacking
either MUDI, a component of the Ul snRNP,%%! or MUD2, a
commitment complex protein®>®® (Fig. S2B, upper panels) -
both of which act early in splicing to commit an RNA to the
splicing pathway. Taken together with results from the reporter
assay, these genetic data further implicate both Set2 and Jhd1
in pre-mRNA splicing.

Our gene expression reporter data and genetic data sup-
port a role for Set2 and Jhdl in pre-mRNA splicing, sug-
gesting that H3K36 methylation state, not just the physical
presence of the Set2 or Jhdl proteins, is important for RNA
splicing. To test whether H3K36 methylation underlies the
genetic interactions we observed, we generated double
mutants that contain both a deletion of a splicing gene and
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Figure 2. Mutations that alter H3K36 methylation state are genetically implicated in RNA splicing. RNA splicing factors display genetic interactions with SET2 and JHD1 (A
and B). Deletion of SET2 combined with a deletion of a gene encoding a splicing factor leads to a range of synthetic growth defects (A). Deletion of JHDT partially sup-
presses the growth defect of select strains harboring a deletion of a splicing factor gene (B). (C and D) RNA splicing factors display synthetic genetic interactions with
H3K36R (C) and H3K36A (D). Serial dilutions of WT, single and double mutant strains grown on rich media at 31°C and 37°C. Plates photographed after 48 hours growth

(note that the ist3A 37°C panel was photographed after 72 hours growth).
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one of 3 point mutations in H3K36 that abolish methyla-
tion (H3K36A, H3K36R, or H3K36Q) and monitored their
growth phenotypes (Figs. 2C and D, Fig. S4A). As expected,
mutations that abolish H3K36 methylation directly
(H3K36R and H3K36A; for H3K36Q see Fig. S4A) exhibit
negative genetic interactions with ist3A and isyIA. For
example, the H3K36A ist3A double mutant has reduced fit-
ness relative to either the H3K36A or ist3A single mutation,
particularly at 37°C (Fig. 2D, center panel). Like the SET2
deletion, we do not observe negative genetic interactions
between the histone point mutations and deletion of MUDI
or MUD2 (Fig. S2B, lower panels). Interestingly, we
observed one unexpected genetic interaction that does not
phenocopy the SET2 deletion mutant phenotype; H3K36R
and H3K36A both exhibit negative genetic interactions with
snu66A (Figs. 2C and D, lower panels). Combined with the
reporter assay, these genetic data provide further evidence
for a specific role for H3K36 methylation state in RNA
splicing.

H3K36 methylation loss results in gene-specific pre-mRNA
splicing defects

The gene expression reporter results presented in Fig. 1 led
us to ask whether the inability to methylate H3K36 results
in a pre-mRNA splicing defect of endogenous yeast introns.
We performed RT-qPCR for a number of introns within
yeast strains lacking Set2 and Jhdl, as well as yeast harbor-
ing alanine, glutamine, or arginine substitutions at H3K36.
The intron-containing genes we analyzed included DBP2,
TEF5, and RPS21B, which have previously been analyzed in
studies investigating co-transcriptional splicing.'*?*7%%*
Yeast were grown at the permissive temperature prior to
RNA extraction and the splicing mutant snu66A served as a
positive control.

The first characteristic of the RT-qPCR results that
stands out is the gene-specific nature of the splicing defects
between strains (Fig. 3). For example, we observe very little
change in pre-mRNA splicing efficiency in the TEF5 intron
with H3K36 mutants, yet find nearly a 2-fold increase in
the pre-mRNA/total ratio for DBP2 (Fig. 3 and Table S4; p
< 0.01 for H3K36A and p < 0.05 for H3K36Q). Addition-
ally for SRB2, we observed a 3-fold splicing defect across all
3 histone point mutants (p < 0.01), yet for RPS21B, we
only observed a splicing defect for the glutamine substitu-
tion (p < 0.01). The splicing defects we observe are similar
in magnitude to those observed when other histone modifi-
cations are perturbed.””**®* In addition, gene-specific splic-
ing defects in budding yeast have been described
previously'>'* and could possibly be a result of features of
the gene or intron such as the length of the gene, and/or its
transcription frequency. Nevertheless, we do observe a trend
of decreased splicing efficiency upon removal of Set2, as
compared to the wild-type strain (Fig. 3 and Table S4; p <
0.01 for DBP2, SRB2 and RPS21B). Conversely, when we
delete the gene encoding the demethylase Jhdl, a defect is
only observed for the DBP2 intron (Fig. 3 and Table S4; p
< 0.01), supporting the idea that methylated H3K36 gener-
ally supports efficient pre-mRNA splicing, and that dynamic
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Figure 3. Genetic modulation of H3K36 methylation state results in gene-specific
pre-mRNA splicing defects. RNA was harvested from the indicated yeast strains at
early/mid log phase. RT-qPCR analysis was performed, determining the pre-mRNA
and total levels of the indicated intron containing transcripts. Reported values
were calculated using a standard curve calculations and are relative to wild-type
ratio; ANOVA p-values and Tukey p-values for gene-specific pair-wise strain com-
parisons reported in Table S4 (A). The data represent biological triplicates and error
bars represent one standard error of measurement. * indicates p <0.01 and "indi-
cates p<0.05 when comparing pre-mRNA/total in the given mutant strain to wild-
type. For other pair-wise comparisons see Table S4 (B) The data are also shown in
heat map form using Cluster and TreeView.

methylation-demethylation is important for at least DBP2
splicing. For the histone point mutants, we observed the
strongest overall splicing defects with the glutamine substi-
tution, followed by the arginine and alanine mutations
respectively. While the splicing phenotypes of the histone
point mutants generally phenocopied the SET2 deletion as
anticipated, we observed some differences. For instance, the
splicing of DBP2 is inhibited more by deletion of SET2 (>3
fold decrease in splicing; Fig. 3 and Table S4) than the his-
tone point mutants, while the splicing of SRB2 is more
severely impacted by mutation of the histone. These differ-
ences may be due to reduced dose of H3 and H4 in the



histone point mutant strains*> or could indicate that Set2 or
the H3K36 lysine residue has an additional role in splicing
outside of histone methylation. Collectively, these data sup-
port a dynamic role for H3K36me in pre-mRNA splicing.

H3K36 methylation loss exacerbates the splicing defects
found in pre-mRNA splicing mutants

Based on the results of the genetic analyses we predicted that
deletion of SET2 or point mutation of H3K36 would exacerbate
the splicing defect observed in strains lacking splicing factor
genes. We tested this for a subset of our double mutant strains,
focusing on those that had the most pronounced growth
defects, first using the fluorescent gene expression reporter
(Fig. S3). As expected from our genetic analyses, deletion of
SET2 enhances the splicing defect observed in the isyIA strain
(double mutant shifted toward the mCherry-axis compared to
singles) and suppresses the splicing defect in the snu66A strain.
Additionally, the H3K36A and H3K36R mutation exacerbates
the splicing defect in isyIA, lealA, snu66A, budl3A and ist3A
(Fig. S3).

We expanded our analysis to endogenous pre-mRNAs using
RT-qPCR to monitor splicing efficiency (Fig. 4). The splicing
phenotypes, in general, mirror those observed using the
reporter, although there are some gene-specific effects. Consis-
tent with results using the reporter, set2A enhanced the splicing
defect observed in the isyIA strain (e.g, SRB2 and RPS2IB
splicing; p < 0.01; Table S5), and strikingly, suppressed the
splicing defect observed in the snu66A strain for all 4 of the
pre-mRNAs monitored (Fig. 4A and Table S5; p < 0.01). Dele-
tion of JHDI also has gene-specific effects, but notably
improved the splicing of DBP2 and TEF5 in the ist3A strain
(Fig. 4B and Table S5; p < 0.01). Additionally, we observe exac-
erbated splicing defects for SRB2 and RPS2IB in the jhdIA
snu66A strain (Fig. 4B and Table S5 p < 0.01 and < 0.05,
respectively), as predicted based on our genetic results.

The H3K36 mutations also exacerbated the splicing defects
observed in several splicing mutant strains, including ist3A,
budi3A, lealA and isyIA (Fig. 4C). The severity of the splicing
defect is dependent on the pre-mRNA and the splicing mutants
examined. For example, H3K36R worsened the splicing defect
of RPS21B in the ist3A strain (p < 0.01), but does so to a much
lesser degree in the lealA strain (Fig. 4C and Table S5). TEF5
splicing is affected in a slightly different manner. H3K36 muta-
tions exacerbate splicing of TEF5 in budI3A and lealA strains
(Fig. 4C and Table S5; p < 0.01). On the other hand the TEF5
splicing defect is partially suppressed when H3K36 is mutated
in an ist3A background (Fig. 4C and Table S5; p < 0.05). We
also clustered all the RT-qPCR data, similar to microarray data
analysis, to observe the overall behavior and relationship of the
double mutants (Fig. 4D). Strikingly, the deletion of set2A in
the snu66A strain results in a major change of clustering behav-
ior compared to snu66A, moving from a group with the stron-
gest splicing defects all the way back to baseline (wild-type),
demonstrating the strong suppression once again. Although
there are exceptions, the data support a general theme of exac-
erbated splicing defects in splicing factor/H3K36me double
mutants. These data strongly support the idea that H3K36
methylation has gene-specific effects on RNA splicing.

RNA BIOLOGY 417

Association of Set2 with the transcribing Polymerase and
H3K36 dimethylation is required for efficient mRNA
splicing

We next wanted to determine what aspects of Set2 function
were responsible for the observed splicing defects. Using a full-
length expression construct of SET2, driven by its endogenous
promoter® we found that exogenous SET2 rescues splicing
defects in a set2A strain (Fig. 5A and 5B and Table S6). In con-
trast, a catalytic mutant of Set2 incapable of H3K36me2/3 that
also significantly reduces H3K36mel®® (set2 HI99L) was not
able to rescue the splicing defect — thus demonstrating that
Set2 activity is necessary for regulated splicing in yeast. Surpris-
ingly, using a mutation in the SET domain of Set2 (set2 R195C)
that diminishes H3K36me3 without altering H3K36mel/2, we
found most of the splicing phenotypes observed in set2A could
be suppressed, with the exception of the DBP2 transcript
(Fig. 5B). This observation suggests that H3K36me3 is mostly
dispensable for splicing in S. cerevisiae, a scenario that is differ-
ent from human cells where H3K36me3, catalyzed by SETD2,
is a critical regulator of splicing.”' ** However, we note it is for-
mally possible that H3K36mel may contribute to some splicing
functions, as the H199L mutant still contain H3K36mel. Nev-
ertheless, our data suggests that H3K36me?2 largely drives most
of the splicing phenotypes.

Intriguingly, the splicing defects observed in set2A were
dependent on both the SRI domain in Set2, which couples it to
the transcribing polymerase (set2 SRIA), and on H3K36me2
(set2 HI99L and set2 R195C; Fig. 5B and Table S6). Another
mutant in the SRI domain, K663L, predicted to disrupt Set2-
RNA Pol II interaction (Hacker et. al., submitted for publica-
tion) did not result in significant alteration in the H3K36 meth-
ylation status, however this mutation does cause a decrease in
the splicing of the several of the endogenous pre-mRNAs
(Figs. S4B and 5B and Table S6). Furthermore, we noticed that
the combined set2 HI99L K663L mutant, which has lost all
forms of methylation (Fig. S4B), is equally as incompetent in
rescuing the splicing defect as the set2 HI99L mutant (Fig. 5B),
strongly suggesting that splicing in yeast is dependent, to a
large extent, on H3K36me2 and a functional SRI domain (i.e.,
Set2-RNA Pol II interaction). Collectively, our findings show
that catalysis and interaction of Set2 with RNA Pol II is critical
for proper mRNA splicing.

Defective transcription elongation in set2A does not
completely explain Set2-dependent splicing defects

Set2/H3K36me has been shown to impact chromatin struc-
ture through the regulation of histone exchange and activa-
tion of deacetylases.”’” Given the intimate connection
between transcription elongation and splicing,®'>'"*"** we
next wondered if the splicing defects observed in the sef2A
strain were a consequence of alterations in transcriptional
elongation. To answer this question, we took advantage of 2
well-established transcriptional elongation defects observed
in the set2A: bypass of a FACT chromatin-reorganizing
complex mutant, spt16-11,°® at semi-permissive temperature
and resistance to the transcription elongation inhibitor 6-
Azauracil (6-AU). Wild-type yeast display growth defects
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when treated with 6-AU or when the positive transcription
regulator Sptl6 is mutated (spt16-11; see Figs. 5C and 5D),
indicative of a transcription elongation defect. We and
others have shown that set2A bypasses the slow growth
phenotype of sptl16-11 at semi-permissive temperature (of
35°C) %% and that sef2A is resistant to 6-AU.*

Since FACT is a positive regulator of transcription elonga-
tion, and 6-AU results in elongation defects, bypass of spt16-11
mutant and resistance to 6-AU suggests Set2 as a negative regu-
lator of transcription elongation. Consistent with this notion,
loss of SET2 results in hyper-acetylation in open reading
frames,’* thereby resulting in more open chromatin and
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more nascent transcription.” Using the set2 mutants described
above, we attempted to identify mutations that impact tran-
scription elongation by testing for rescue of the transcriptional
elongation phenotypes observed in set2A in the presence of 6-
AU and in the spt16 mutant allele. Full-length SET2 but not the
catalytic mutant (set2 H199L) or set2 SRIA was able to suppress
the set2A phenotypes®® (Figs. 5C and 5D). In this scenario we
also observed that the set2 HI99L K663L double mutant
behaved like the set2 HI99L mutant, suggesting that the driver
for the observed phenotypes are H3K36me2. These data suggest
that both the SRI domain and H199L are critical for the nega-
tive regulation of transcription elongation by Set2. We also
tested whether the set2 mutations implicated in transcription
elongation altered RNA splicing. Both the set2 SRIA and set2
HI99L reduce the splicing efficiency of endogenous pre-
mRNAs (Fig. 5B and Table S6), consistent with a model in
which transcription elongation and RNA splicing are coupled.
Notably, the set2 R195C mutant, which selectively inhibits
H3K36me3 (Fig. S4B), and the set2 K663L mutant are both 6-
AU sensitive and cannot suppress the spt16-11 growth defect.
These data suggest that H3K36me3 and certain set2 mutants
(specifically set2 K663L) are dispensable for Set2-mediated neg-
ative regulation of transcriptional elongation. Surprisingly, we
found the splicing of DBP2 is reduced in the set2 R195C mutant
compared to the wild-type strain (Fig. 5B and Table S6; p <
0.01), and that the set2 K663L mutation results in splicing
defects for the SRB2 and RPS21B when compared to a wild-
type strain (p < 0.05 and p < 0.01, respectively). These data
suggest that the splicing defects observed for these pre-mRNAs
are not solely due to alteration of elongation alone. Taken
together, these data indicate that in addition to the canonical
function of regulating chromatin structure during transcription
elongation, Set2-dependent H3K36 methylation regulates splic-
ing, in a manner that may be uncoupled from its role in tran-
scription elongation.

Deletion of SET2 reduces association of the U2 and U5
snRNPs with pre-mRNA during transcription

Our genetic analyses support the notion that the splicing effects
of a SET2 deletion are not simply due to a defect in transcrip-
tion elongation, which could have been possible since changes
in the kinetics of elongation are known to impact splicing effi-
ciency.>'®'"*1*? Importantly, our observation is reinforced by
studies from the Struhl lab that show Set2 loss has no effect on
RNA Pol II elongation rate or processivity.”” Given that Set2/
H3K36me2 is likely functioning directly in splicing, we rea-
soned that Set2 and/or H3K36 methylation might be important
for recruiting splicing proteins to facilitate co-transcriptional
spliceosome assembly'®'" (i.e., a recruitment model).

To directly test whether Set2 helps in recruiting RNA splic-
ing proteins during transcription, we monitored the association
of Prp42-HA (U1l snRNP), Leal-HA (U2 snRNP) and the
Snull4-HA (U5 snRNP) on chromatin in a sef2A strain by
chromatin immunoprecipitation (ChIP). Previous studies indi-
cate that all 3 of these HA-tagged proteins can associate with
pre-mRNA co-transcriptionally.® We specifically monitored
association of these snRNPs with the DBP2 pre-mRNA, which
is the only pre-mRNA that we identified as being H3K36me3

dependent, RPS21B pre-mRNA, which is the only pre-mRNA
that relies heavily on Set2 interaction with RNA Pol II for splic-
ing, and SRB2, which requires H3 mono- and di- methylation
for splicing (Fig. 6A). Wild-type and set2A cells were grown at
the permissive temperature then shifted to 37°C for 30 minutes
prior to ChIP analysis as we observed some of our strongest
genetic interactions between SET2 and splicing proteins at
37°C. We used RT-qPCR to monitor splicing defects of the
pre-mRNAs in the set2A strain at 37°C. (Fig. S5B). Impor-
tantly, deletion of SET2 does not appreciably alter the protein
levels of the HA-tagged splicing factors used in this analysis
(Fig. S5A) nor does it cause a significant change in the expres-
sion levels of other splicing proteins.”" Utilizing antibodies that
recognize either the HA-tag found in the splicing proteins or
the Rpb3 subunit of RNA Pol II, we found that deletion of
SET?2 resulted in a significant decrease in association of Leal-
HA in both the intron regions of the RPS21B and SRB2 genes
(p < 0.05) as well as the some of the exon regions of the pre-
mRNA (Fig. 6B). The RNA Pol II association with the RPS21B
gene was lowered by less than 20% in the set2A strain com-
pared to wild-type Leal-HA strain (p < 0.05), but it is unlikely
that this small reduction alone can account for the nearly 50%
reduction in association of Leal-HA with the pre-mRNA. We
were unable to detect any significant reduction in RNA Pol II
association with the SRB2 gene. RNA Pol II association with
the DBP2 increased in exon region of the gene (p < 0.05) in the
set2A strain, which is consistent with a previous report of RNA
Pol IT accumulation at the 3’ end of the SCC2 gene in the
absence of SET2"* (Fig. 6B). An increase in RNA pol II associa-
tion might be due to a pause in RNA Pol II induced by SET2
deletion. Interestingly, according to a kinetic coupling model
RNA Pol II pausing could allow time for enhanced snRNP
association,'™'" however, we observe a modest albeit insignifi-
cant reduction in the association of Leal-HA along the DBP2
gene (Fig. 6B).

U5 snRNP association with certain pre-mRNAs is also
impacted by deletion of SET2. We observed a significant
decrease in the association of Snull4-HA with the RPS2IB
gene (Fig. 6C; p < 0.05 for the intron amplicon), and impor-
tantly we see no change in RNA Pol II association in this strain
compared to WT (Fig. 6C). U5 association with SRB2 or DBP2
is not significantly impacted by deletion of SET2. We do not
observe a decrease in the association of Ul snRNP with chro-
matin in the set2A strain (Fig. S5C and S5D), consistent with a
recent study.”” We therefore conclude that while Set2 may
impact splicing of some pre-mRNAs by altering elongation
rate, Set2 also plays a more direct role in U2 and U5 snRNP
recruitment to pre-mRNAs during transcription to promote
co-transcriptional spliceosome assembly.

Discussion

We utilized a fluorescent gene expression reporter to reveal
particular histone residues and modifications that are impor-
tant for pre-mRNA splicing. We focused on a specific role for
H3K36 methylation, as both the loss of SET2 and mutation of
H3K36 resulted in splicing defects, thus implying a direct func-
tion of Set2 in the RNA splicing process. We show that muta-
tions altering H3K36 methylation genetically interact with
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splicing factors and are required for the splicing of a subset of
introns in yeast. Moreover, we demonstrate that Set2 functions
to promote RNA splicing by facilitating co-transcriptional
recruitment of the U2 and U5 snRNPs to nascent RNA. Fur-
thermore, our work reveals that splicing depends on the associ-
ation of Set2 with the transcribing polymerase, and is
particularly sensitive to the specific H3K36 methylation state.
To our knowledge, this is the first report of transcript-linked
H3K36me requirement in RNA splicing in yeast — thus imply-
ing a universal conservation of the linked role of H3K36me in
this event.

Our gene expression reporter screen identified a variety of
histone residues important for splicing efficiency. With the
interpretation that the phenotypes observed are mediated
through the loss of the histone modifications normally found at
these residues, our work confirmed roles for H3 acetylation by
Gcen5,%7?® H2BK123 ubiquitination by Brel,**° and support a
role for the previously identified modification enzymes Setl,
Set2* and Bdf1 and Vps72°* in RNA splicing, Importantly, we
uncovered novel players in splicing regulation. For example, we
determined that the H4K16A and H4K12Q mutations in addi-
tion to H3K36 mutations also impact RNA splicing. H4K16
and H4K12 acetylation is enriched in transcriptionally active
regions of eukaryotes and plays a role in regulating chromatin
organization and dynamics.**”

Previous work had identified a role for Set2 in splicing in
yeast,”” however it was not determined whether this role was
mediated through H3K36me (or specific methylation states of
H3K36) nor was the underlining mechanism elucidated. Here
we demonstrate that mutation of the H3K36 to A, R or Q
causes a defect in RNA splicing and exacerbates the growth
defect and splicing defect in yeast strains harboring deletions of
splicing factors, thus demonstrating a role for methylation of
H3K36 in RNA splicing. Moreover, our studies revealed that
splicing is dependent on H3K36 di-methylation. H3K36 can
also be acetylated by Gen5.”* However our results indicate that
the H3K36Q acetylation-mimic mutant has defects in RNA
splicing demonstrating that acetylation of H3K36 is not
required for the splicing of the pre-mRNAs used in this study.
It is conceivable that the role of H3K36me2 in splicing is
directly connected to the ability of this mark to maintain a sup-
pressed chromatin environment through the recruitment of
Rpd3S and Iswlb.>”*' Indeed, deletion of RPD3, which encodes
a member of the Rpd3 complex,”>”” also leads to modest splic-
ing defects, which could imply that histone deacetylation and
chromatin remodeling (i.e., creation of a particular chromatin
environment) plays a key role in snRNP recruitment. Another
possibility is the potential role of H3K36 methylation in affect-
ing some aspect of RNA Pol II elongation or termination.
Indeed, recent studies in yeast show that slowing elongation
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improves pre-mRNA splicing efficiency and that fast elonga-
tion impairs splicing.**"** Further, impaired termination has
also been shown to impact proper splicing in metazoan.”® This
possibility seems less likely as a recent report revealed that dele-
tion of SET2 had no impact on RNA Pol II elongation or proc-
essivity.”’ The ultimate consequence of Set2/H3K36me2 on
some aspect of transcription termination that might impinge
directly on the recruitment of splicing machinery to chromatin
is currently unknown. As we showed that Set2 was required for
the association of U2 and U5 on chromatin (Fig. 6), it may be
that these splicing factors bind directly to H3K36-marked
nucleosomes or the chromatin structure generated by
H3K36me. The idea of direct methyl binding is consistent with
recent studies in mammals showing that H3K36me3 by SETD2
is recognized by adapter proteins, which in turn recruits the U2
snRNP or splicing regulatory proteins to pre-mRNA to modu-
late alternative RNA splicing.’'** Whether Set2 works directly
to recruit the snRNPs via H3K36me or altered chromatin struc-
ture remains an interesting question for future studies.

Our biochemical data also showed that Set2 is not required
for recruitment of the Ul snRNP (Fig. S5D), which is consis-
tent with a recent report,” and indicates that Set2 functions to
affect splicing downstream of Ul binding. Our genetic data
agree with this model. For example, deletion of SET2 is epistatic
with deletion of MUDI, which encodes a Ul snRNP compo-
nent (Fig. S2). Notably, we observe negative genetic interactions
between mutations that abolish H3K36 me (SET2 and
H3K36A/R) and IST3 (Fig. 2) and LEAI (not shown), compo-
nents of the U2 complex,”®”® as well as deletions of factors
required for later steps of splicing (Figs. 2). One intriguing
exception is that deletion of SNU66, a component of the U4/
U6eU5 tri-snRNP,*>* has positive genetic interactions with
SET2 (Fig. 2), suggesting that deletion of SET2 introduces a stall
in RNA splicing that can be bypassed when SNU66 is deleted.
Thus, Snu66 function in splicing and transcription may extend
beyond that of the other canonical splicing factors. Taken
together our genetic data suggest that Set2 and H3K36me func-
tion to modulating splicing steps downstream of Ul snRNP
binding, and support a model in which Set2 aids in the co-tran-
scriptional association of the U2 and U5 snRNPs with RNA.
Recruitment of U2 snRNP appears to be a common mechanism
by which histone modification impacts RNA splicing in both
yeast and metazoa. The Gen5 histone acetylase and H3 acetyla-
tion is important for recruiting the U2 snRNP in yeast®”** and
in metazoa, H3K4 methylation by Setl methyltransferase as
well as H3K36me3 by SETD2, both function to recruit the U2
snRNP co-transcriptionally.®**>°

Interestingly, in yeast, there appears to be a requirement
for a cycle of histone modification and subsequent removal
of the histone modification for efficient RNA splicing. For
example, deletion of the Brel E3 ubiquitin ligase, as well as
deletion of Ubp8 deubiquitinase, which both modulate H2B
ubiquitination levels, cause a reduction in RNA splicing.*’
Furthermore, H3 acetylation by Gen5 and deacetylation by
Hos2/3 are required for RNA splicing.””*® Here we show
that deletion of the H3K36mel/2 demethylase Jhdl has
modest positive genetic interactions with splicing factor
genes (e.g.,, jhdIA ist3A; Fig. 2) and improves splicing of
some introns in strains lacking splicing factor genes (e.g.,

DBP2 splicing in the jhdIlA ist3A; Fig 4A), suggesting that
Jhdl might normally negatively regulate RNA splicing.
However, we also observe that deletion of JHDI alone
causes an inhibition of DBP2 splicing when compared to a
wild-type strain (Fig. 3), and it exacerbates the splicing of
DBP2 in an isyIA strain (Fig. 4A), suggesting that Jhdl can
also stimulate splicing. Thus, while a clear role for Jhdl in
splicing remains to be resolved, it appears that demethyla-
tion of H3K36 is also required for the splicing of some
endogenous transcripts, indicating that the dynamic cycle of
H3K36 methylation and demethylation might also be
required for RNA splicing.

A model in which histone modification and RNA splic-
ing are tightly coordinated is rapidly emerging, and leaves
open the exciting possibility that coordination may be bidi-
rectional and that RNA splicing can influence histone modi-
fication, thus changing the epigenetic signature along a
gene. Indeed, recent reports in metazoa have shown that
perturbation of RNA splicing by either the deletion of the
BPS or 3’SS or using the splicing inhibitor spliceostatin A,
alters the pattern of distribution of H3K36me3, shifting it
away from the intron region toward the 3’ end of a gene.*’
In addition, a second study found that perturbing splicing
using the splicing inhibitor meayamycin or by inhibiting
splicing by knocking down the splicing factor SAP130 lead
to a decreased association of both H3K36me3, as well as
SETD2, with intron contain regions of chromatin.*!
Whether or not splicing in yeast enhances the recruitment
of Set2 or the pattern of H3K36me to reciprocally couple
RNA splicing with histone modification remains to be
determined.

Our study also uncovered novel, specific roles for different
methylation states of H3K36 in yeast pre-mRNA splicing. Both
mono and di-methylation of H3K36 are required for the effi-
cient splicing of all of the transcripts that we analyzed, as well
as the gene expression reporter (Fig. 5A and 5B; see set2
HI199L). However, tri-methylation is only required for the effi-
cient splicing of one of the 4 endogenous introns surveyed
(DBP2 in set2 RI195C; Fig 5B). In higher eukaryotes,
H3K36me3 is enriched in exons relative to introns,”> and is
implicated in alternative splicing.®’>* In yeast, the extent of
H3K36me required for RNA splicing appears to be transcript
specific and genome-wide studies will be necessary to deter-
mine the subsets of RN As requiring specific modification states.
In addition, it will be important to determine whether H3K36
mono- or di-methylation are required for splicing in metazoa.
With the availability of new Drosophila histone point mutant
platforms,* it will be of interest to directly address the role of
H3K36me in regulating canonical and alternative splicing in a
metazoan.

Materials and methods
Yeast strains and plasmids

For a list of the strains used in this study please see Table S1
and for a description of the methods used to create new strains
for this study please see the Supporting Methods section. Please
refer to Table S2 for a list of plasmids used in this study.



Qualitative growth assays

Yeast cultures were grown to mid-log (ODsgs 0.4-0.8) and
diluted to ODsgs 0.1, then further diluted by serial 5-fold dilu-
tions, spotted on YEPD plates and incubated at 31°C or 37°C
for 2-3 days.

Flow cytometry

Log-phase yeast harboring the reporter were fixed, washed and
resuspended in 1X PBS prior to analysis with a Becton Dickin-
son LSRFortessa. For excitation of eGFP and mCherry, 488 nm
and 561 nm lasers were used respectively. For detection a 505
LP and 530/30 BP were used for eGFP and a 600 LP and 610/
20 BP for mCherry. For each sample 21,000 events were col-
lected and 10,000 events are shown in the phenographs. Analy-
sis and visualization was completed with Flow]o. Details on the
binning and clustering analysis are previously described.**

RT-qPCR

A full description of these methods have been previously
described.** Briefly, log phase cells were harvested and total
RNA was extracted using standard acid/phenol extraction using
Phase Lock tubes (5 PRIME). RNA (5 j1g) was DNase treated
(5 U RQ1 DNase, Promega) and purified (RNA Clean and
Concentrator kit; Zymo). For the RT reaction the following was
added to RNA; 10X RT Buffer (0.5 M Tris-HCI pH 8.5) and
random nonamer primers (25 uM; IDT). After annealing a RT
master mix (1X RT Buffer, 3 mM MgCl,, 10 mM DTT, 0.5 mM
dNTPs and 5 U/ul MultiScribe RT enzyme) was added. The
RT reaction was incubated overnight at 42°C and the resulting
c¢DNA was diluted. Each qPCR reaction contained 5 ul cDNA,
7.5 ul Power SYBR Green PCR Master Mix (ABI) and 2.5 ul
primers (1.5 uM each; see above for sequences). Standard ther-
mocycling, fluorescence detection and analysis (standard curve)
were completed using the ViiA 7 Real-Time PCR System (Life
Technologies). For the RT-qPCR shown in Fig. S5B, indicated
yeast strain cultures were grown at 31°C to ODsgs between
0.25-0.4 and shifted to 37°C for 30 min prior to cDNA synthe-
sis. The percent unspliced RNA = relative copies intron/rela-
tive copies Exon2 x 100 (Fig. S5B). Primers are indicated in
Table S2. Error bars represent one SEM. We tested for strain
differences in splicing efficiency of each pre-mRNA within
each yeast strain using ANOVA, with yeast strain as the inde-
pendent factor, followed by Tukey tests for pair-wise differen-
ces between strains (ANOVA and Tukey p-values reported in
Table S4, S5, and S6). Raw data were square root transformed
in order to meet the assumption of homogeneous variances.

Transcriptional assays

Briefly, cells with indicated genotypes were grown overnight
either in YPD or in selective medium. Saturated cultures were
serially diluted (1:5) plated on relevant plates (YPD plates for
spt16-11 strains; 6-AU containing plates for set2 mutants) and
pictures were obtained after 2-3 days.
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Site directed mutagenesis

Point mutants in FL Set2 were made using the Quikchange Site
directed mutagenesis kit (from Agilent) as per manufacturer’s
directions. The primers sequences have been provided in
Table S3.

Chromatin immunoprecipitation

ChIPs were performed as previously described,* with the
following modifications. Yeast cultures were grown at 31°C
to ODsgs between 0.25-0.4 and shifted to 37°C for 30 mins.
The chromatin fraction was sonicated in a QSonia Q800 at
intervals of 30sec. sonication, 20 sec. rest for 70 mins, fol-
lowed by centrifugation at 4°C at 10,000 RCF for 10 mins.
Protein G beads (10 nL; GE Healthcare) were pre-incubated
with 3.5 uL of either «-Rbp3 (Neoclone W0012) or 7.5 uL
o-HA (Roche 12CA5, Cat #11583816001) for 2 hrs at 4°C,
then washed withl ml Lysis buffer plus protease inhibitors
(100 pg/ml aprotonin, leupeptin, antipain, and 200 uM
PMSEF). IPs were incubated for 2 hrs at 4°C. DNA pellets
were resuspended in 50 L TE. The total DNA was diluted
1/320 and the IP DNA was diluted 1/20. DNA was analyzed
by qPCR using an Stratagene Mx3000P. Each 50 puL PCR
reaction was assembled as above with 20 uL DNA (primers
are listed in Table S3). A standard curve was generated
using yeast genomic DNA. Each IP sample was run in
duplicate, the calculated relative amounts were averaged
and normalized to an averaged relative amount for an inter-
genic region (indicated in Table S3). Each IP was then nor-
malized to the average total input sample; values are
reported in Fig. 6. Note that the values reported in
Fig. S5D are the averaged o-HA IP/a-RNA pol IP. In
Fig. 6, for Leal-HA ChIPs n = 3 biological replicates for
DBP2 and SRB2 and n = 4 for RPS21B and for Snull4-HA
ChIPs, n = 4 for DBP2 and n = 3 for RPS21B and SRB2.
In Fig. S5, for the Prp42-HA ChIPs n = 3 for both Rps21b
and Dbp2. Error bars represent SEM. The p-values reported
were determined using 2-tailed student t-tests.
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