124 research outputs found

    Massive scalar field instability in Kerr spacetime

    Full text link
    We study the Klein-Gordon equation for a massive scalar field in Kerr spacetime in the time-domain. We demonstrate that under conditions of super-radiance, the scalar field becomes unstable and its amplitude grows without bound. We also estimate the growth rate of this instability.Comment: 10 pages, 5 figure

    AFFDEX 2.0: A Real-Time Facial Expression Analysis Toolkit

    Full text link
    In this paper we introduce AFFDEX 2.0 - a toolkit for analyzing facial expressions in the wild, that is, it is intended for users aiming to; a) estimate the 3D head pose, b) detect facial Action Units (AUs), c) recognize basic emotions and 2 new emotional states (sentimentality and confusion), and d) detect high-level expressive metrics like blink and attention. AFFDEX 2.0 models are mainly based on Deep Learning, and are trained using a large-scale naturalistic dataset consisting of thousands of participants from different demographic groups. AFFDEX 2.0 is an enhanced version of our previous toolkit [1], that is capable of tracking efficiently faces at more challenging conditions, detecting more accurately facial expressions, and recognizing new emotional states (sentimentality and confusion). AFFDEX 2.0 can process multiple faces in real time, and is working across the Windows and Linux platforms.Comment: Accepted at the FG2023 conferenc

    Superradiant instability of charged massive scalar field in Kerr-Newman-anti-de Sitter black hole

    Full text link
    We study the superradiance instability of charged massive scalar field in the background of Kerr-Newman-anti-de Sitter black hole. By employing the asymptotic matching technique to solve Klein-Gordon equation analytically, the complex parts of quasinormal frequencies are shown to be positive in the regime of superradiance. Because the calculation is performed in the approximation of small black hole, the result indicates that small Kerr-Newman-anti-de Sitter black hole is unstable against the massive scalar field perturbation with small charge.Comment: 13 pages, no figure, comments are welcome! Revised version accepted by PL

    New instability for rotating black branes and strings

    Get PDF
    The evolution of small perturbations around rotating black branes and strings, which are low energy solutions of string theory, are investigated. For simplicity, we concentrate on the Kerr solution times transverse flat extra dimensions, possibly compactified, but one can also treat other branes composed of any rotating black hole and extra transverse dimensions, as well as analogue black hole models and rotating bodies in fluid mechanics systems. It is shown that such a rotating black brane is unstable against any massless (scalar, vectorial, tensorial or other) field perturbation for a wide range of wavelengths and frequencies in the transverse dimensions. Since it holds for any massless field it can be considered, in this sense, a stronger instability than the one studied by Gregory and Laflamme. Accordingly, it has also a totally different physical origin. The perturbations can be stabilized if the extra dimensions are compactified to a length smaller than the minimum wavelength for which the instability settles in, resembling in this connection the Gregory-Laflamme case. Likewise, this instability will have no effect for astrophysical black holes. However, in the large extra dimensions scenario, where TeV scale black holes can be produced, this instability should be important. It seems plausible that the endpoint of this instability is a static, or very slowly rotating, black brane and some outgoing radiation at infinity.Comment: 4 pages, ReVTeX4. v2: minor improvement

    Stability study of a model for the Klein-Gordon equation in Kerr spacetime

    Full text link
    The current early stage in the investigation of the stability of the Kerr metric is characterized by the study of appropriate model problems. Particularly interesting is the problem of the stability of the solutions of the Klein-Gordon equation, describing the propagation of a scalar field of mass μ\mu in the background of a rotating black hole. Rigorous results proof the stability of the reduced, by separation in the azimuth angle in Boyer-Lindquist coordinates, field for sufficiently large masses. Some, but not all, numerical investigations find instability of the reduced field for rotational parameters aa extremely close to 1. Among others, the paper derives a model problem for the equation which supports the instability of the field down to a/M0.97a/M \approx 0.97.Comment: Updated version, after minor change

    Comparisons among computed tomographic features of adipose masses in dogs and cats

    Get PDF
    A better understanding of the CT features of different forms of canine and feline adipose tumors would be valuable for improving patient management and treatment. The purpose of this retrospective, cross-sectional study was to describe and compare the CT features of pathologically confirmed lipomas, infiltrative lipomas, and liposarcomas in a sample of canine and feline patients. A total of 50 animals (46 dogs, four cats) and a total of 60 lesions (23 lipomas, 20 infiltrative lipomas, and 17 liposarcomas) were included in the study. Lipomas appeared as round to oval-shaped (n = 21), well-marginated (n = 20) fat-attenuating lesions. Infiltrative lipomas appeared as homogeneous, fat-attenuating masses but, unlike lipomas, they were most commonly characterized by an irregular shape (75%; P < 0.001), and linear components, hyperattenuating relative to the surrounding fat (100%; P < 0.05). Liposarcomas were represented exclusively by heterogeneous lesions with soft tissue attenuating components with a multinodular appearance (76.5%; P < 0.05). Regional lymphadenopathy (n = 10) and amorphous mineralization (n = 4) were also observed in association with liposarcomas. Computed tomography can provide useful information regarding disease location, extent, and involvement of the adjacent structures. Tumor definition and shape were the most useful parameters to differentiate between lipomas and infiltrative lipomas. The presence of a heterogeneous mass, with a multinodular soft tissue component and associated regional lymphadenopathy and mineralization, were features favoring a diagnosis of liposarcoma

    Pathology in Context

    No full text
    corecore