380 research outputs found

    Lanthanide-doped nanoparticles as the active optical medium in polymer-based devices

    Get PDF
    The luminescence of lanthanide ions in organic environment is greatly reduced compared to inorganic materials. This thesis describes the doping of the lanthanide ions in the core of inorganic nanoparticles that are soluble in organic solvents as a way to shield the lanthanide ions from the organic environment and thus to increase the luminescence properties

    Absorption spectroscopy of complex rare earth ion doped hybrid materials over a broad wavelength range

    Get PDF
    In the present work we applied a measurement setup to determine several relevant properties of rare-earth doped nanoparticles dispersed in polymer slab waveguides in a single absorption measurement: background absorption of the polymer host material, water absorption, polymer composition (overtones), rare earth concentration, and ligand contribution (increase of exponential loss trend in the UV). Furthermore, nanoparticle size and concentration in case of a refractive index mismatch (1//spl lambda//sup 4/ and r/sup 6/ dependence of Rayleigh scattering losses in the UV) could be extracted

    Optical gain of LaF3:Nd nanoparticle doped polymers for active integrated optical devices.

    Get PDF
    We report on rare earth doped LaF3 nanoparticles dispersed in PMMA and SU-8 photosensitive polymers. We observed optical gain after we applied these materials for waveguides. Experimental results on various samples will be discussed. We theoretically discuss the improvements that can be obtained and the possibilities of this new class of materials when applied to microring resonators

    A novel photodefinable polymer containing rare-earth doped nanoparticles for optical amplification

    Get PDF
    We report on neodymium doped LaF3 nanoparticles dispersed in a photo definable polymer. Standard spin coating is used to deposit uniform thin films on a silicondioxide buffer layer, which can be photocured and developed to produce monomode active optical waveguides. Optical properties of the film are obtained using a prism coupling setup, showing low losses of the photosensitive polymer host material in both the visible and infrared. In addition, the absorption and emission due to the neodymium doped LaF3 nanoparticles have been determined for a range of particle concentrations

    Bimetallic Pt(II)-bipyridyl-diacetylide/Ln(III) tris-diketonate adducts based on a combination of coordinate bonding and hydrogen bonding between the metal fragments: syntheses, structures and photophysical properties

    Get PDF
    The luminescent Pt(II) complex [Pt(4,4'-Bu-t(2)-bipy){CC-(5-pyrimidinyl)}(2)] (1) was prepared by coupling of [Pt(4,4'-Bu-t(2)-bipy)Cl-2] with 5-ethynyl-pyrimidine, and contains two pyrimidinyl units pendant from a Pt(H) bipyridyl diacetylide core; it shows luminescence at 520 nm which is typical of Pt(II) luminophores of this type. Reaction with [Ln(hfac)(3)(H2O)(2)] (hfac = anion of hexafluoroacetylacetone) affords as crystalline solids the compounds [1 center dot {Ln(hfac)(3)(H2O)}{Ln(hfac)(3)(H2O)(2)}] (Ln = Nd, Gd, Er, Yb), in which the {Ln(hfac)(3)(H2O)} unit is coordinated to one pyrimidine ring via an N atom, whereas the {Ln(hfac)(3)(H2O)(2)} unit is associated with two N atoms, one from each pyrimidine ring of 1, via N center dot center dot center dot HOH hydrogen-bonding interactions involving the coordinated water ligands on the lanthanide centre. Solution spectroscopic studies show that the luminescence of 1 is partly quenched on addition of [Ln(hfac)(3)(H2O)(2)] (Ln = Er, Nd) by formation of Pt(II)/Ln(III) adducts in which Pt(II)-> Ln(III) photoinduced energy-transfer occurs to the low-lying f-f levels of the Ln(Ill) centre. Significant quenching occurs with both Er(Ill) and Nd(III) because both have several f-f states which match well the (MLCT)-M-3 emission energy of 1. Time-resolved luminescence studies show that Pt(II)-Er(III) energy-transfer (7.0 x 10(7) M-1) is around three times faster than Pt(II)-> Nd(III) energy-transfer (approximate to 2 x 10(7) M-1) over the same distance because the luminescence spectrum of l overlaps better with the absorption spectrum of Er(111) than with Nd(III). In contrast Yb(111) causes no significant quenching of 1 because it has only a single f-f excited level which is a poor energy match for the Pt(II)-based excited state

    Preparation and properties of copper-oil-based nanofluids

    Get PDF
    In this study, the lipophilic Cu nanoparticles were synthesized by surface modification method to improve their dispersion stability in hydrophobic organic media. The oil-based nanofluids were prepared with the lipophilic Cu nanoparticles. The transport properties, viscosity, and thermal conductivity of the nanofluids have been measured. The viscosities and thermal conductivities of the nanofluids with the surface-modified nanoparticles have higher values than the base fluids do. The composition has more significant effects on the thermal conductivity than on the viscosity. It is valuable to prepare an appropriate oil-based nanofluid for enhancing the heat-transfer capacity of a hydrophobic system. The effects of adding Cu nanoparticles on the thermal oxidation stability of the fluids were investigated by measuring the hydroperoxide concentration in the Cu/kerosene nanofluids. The hydroperoxide concentrations are observed to be clearly lower in the Cu nanofluids than in their base fluids. Appropriate amounts of metal nanoparticles added in a hydrocarbon fuel can enhance the thermal oxidation stability

    Full Visible Range Covering InP/ZnS Nanocrystals with High Photometric Performance and Their Application to White Quantum Dot Light-Emitting Diodes

    Get PDF
    Cataloged from PDF version of article.High-quality InP/ZnS core–shell nanocrystals with luminescence tunable over the entire visible spectrum have been achieved by a facile one-pot solvothermal method. These nanocrystals exhibit high quantum yields (above 60%), wide emission spectrum tunability and excellent photostability. The FWHM can be as narrow as 38 nm, which is close to that of CdSe nanocrystals. Also, making use of these nanocrystals, we further demonstrated a cadmium-free white QD-LED with a high color rendering index of 91. The high-performance of the resulting InP/ZnS NCs coupled with their low intrinsic toxicity may further promote industrial applications of these NC emitters

    Formation of PbSe/CdSe Core/Shell Nanocrystals for Stable Near-Infrared High Photoluminescence Emission

    Get PDF
    PbSe/CdSe core/shell nanocrystals with quantum yield of 70% were obtained by the “successive ion layer adsorption and reaction” technology in solution. The thickness of the CdSe shell was exactly controlled. A series of spectral red shifts with the CdSe shell growth were observed, which was attributed to the combined effect of the surface polarization and the expansion of carriers’ wavefunctions. The stability of PbSe nanocrystals was tremendously improved with CdSe shells
    corecore