167 research outputs found

    Maternal and Fetal Outcomes of Anticoagulation in Pregnant Women WithΒ Mechanical HeartΒ Valves

    Get PDF
    Anticoagulation for mechanical heart valves during pregnancy is essential to prevent thromboembolic events. Each regimen has drawbacks with regard to maternal or fetal risk. Objectives This meta-analysis sought to estimate and compare the risk of adverse maternal and fetal outcomes in pregnant women with mechanical heart valves who received different methods of anticoagulation. Methods Studies were identified using a Medline search including all publications up to June 5, 2016. Study inclusion required reporting of maternal death, thromboembolism, and valve failure, and/or fetal spontaneous abortion, death, and congenital defects in pregnant women treated with any of the following: 1) a vitamin K antagonist (VKA) throughout pregnancy; 2) low-molecular-weight heparin (LMWH) throughout pregnancy; 3) LMWH for the first trimester, followed by a VKA (LMWH and VKA); or 4) unfractionated heparin for the first trimester, followed by a VKA (UFH and VKA). Results A total of 800 pregnancies from 18 publications were included. Composite maternal risk was lowest with VKA (5%), compared with LMWH (16%; ratio of averaged risk [RAR]: 3.2; 95% confidence interval [CI] : 1.5 to 7.5), LMWH and VKA (16%; RAR: 3.1; 95% CI: 1.2 to 7.5), or UFH and VKA (16%; RAR: 3.1; 95% CI: 1.5 to 7.1). Composite fetal risk was lowest with LMWH (13%; RAR: 0.3; 95% CI: 0.1 to 0.8), compared with VKA (39%), LMWH and VKA (23%), or UFH and VKA (34%). No significant difference in fetal risk was observed between women taking ≀5 mg daily warfarin and those with an LMWH regimen (RAR: 0.9; 95% CI: 0.3 to 2.4). Conclusions VKA treatment was associated with the lowest risk of adverse maternal outcomes, whereas the use of LMWH throughout pregnancy was associated with the lowest risk of adverse fetal outcomes. Fetal risk was similar between women taking ≀5 mg warfarin daily and women treated with LMWH

    Factors predicting clinically significant fatigue in women following treatment for primary breast cancer

    Get PDF
    Cancer-related fatigue is common, complex, and distressing. It affects 70–100% of patients receiving chemotherapy and a significant number who have completed their treatments. We assessed a number of variables in women newly diagnosed with primary breast cancer (BrCa) to determine whether biological and/or functional measures are likely to be associated with the development of clinically significant fatigue (CSF). Two hundred twenty-three women participated in a study designed to document the impact of the diagnosis and treatment of primary breast cancer on function. Forty-four had complete data on all variables of interest at the time of confirmed diagnosis but prior to treatment (baseline) and β‰₯9Β months post-diagnosis. Objective measures and descriptive variables included history, physical examination, limb volume, hemoglobin, white blood cell count, and glucose. Patient-reported outcomes included a verbal numerical rating of fatigue (0–10, a score of β‰₯4 was CSF), five subscales of the SF-36, Physical Activity Survey, and Sleep Questionnaire. At baseline, the entire cohort (n = 223) and the subset (n = 44) were not significantly different for demographic, biological, and self-reported data, except for younger age (p = 0.03) and ER+ (p = 0.01). Forty-five percent had body mass index (BMI) β‰₯ 25, 52% were post-menopause, and 52% received modified radical mastectomy, 39% lumpectomy, 52% chemotherapy, 68% radiation, and 86% hormonal therapy. Number of patients with CSF increased from 1 at baseline to 11 at β‰₯9Β months of follow-up. CSF at β‰₯9Β months significantly correlated with BMI β‰₯ 25, abnormal white blood cell count, and increase in limb volume and inversely correlated with vigorous activity and physical function (p < 0.05). Fatigue increases significantly following the treatment of BrCa. Predictors of CSF include high BMI and WBC count, increase in limb volume, and low level of physical activity. These are remediable

    Manipulation of Plant Defense Responses by the Tomato Psyllid (Bactericerca cockerelli) and Its Associated Endosymbiont Candidatus Liberibacter Psyllaurous

    Get PDF
    Some plant pathogens form obligate relationships with their insect vector and are vertically transmitted via eggs analogous to insect endosymbionts. Whether insect endosymbionts manipulate plant defenses to benefit their insect host remains unclear. The tomato psyllid, Bactericerca cockerelli (Sulc), vectors the endosymbiont β€œCandidatus Liberibacter psyllaurous” (Lps) during feeding on tomato (Solanum lycopersicum L.). Lps titer in psyllids varied relative to the psyllid developmental stage with younger psyllids harboring smaller Lps populations compared to older psyllids. In the present study, feeding by different life stages of B. cockerelli infected with Lps, resulted in distinct tomato transcript profiles. Feeding by young psyllid nymphs, with lower Lps levels, induced tomato genes regulated by jasmonic acid (JA) and salicylic acid (SA) (Allene oxide synthase, Proteinase inhibitor 2, Phenylalanine ammonia-lyase 5, Pathogenesis-related protein 1) compared to feeding by older nymphs and adults, where higher Lps titers were found. In addition, inoculation of Lps without insect hosts suppressed accumulation of these defense transcripts. Collectively, these data suggest that the endosymbiont-like pathogen Lps manipulates plant signaling and defensive responses to benefit themselves and the success of their obligate insect vector on their host plant

    Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The modulation of gap junctional communication between tumor cells and between tumor and vascular endothelial cells during tumorigenesis and metastasis is complex. The notion of a role for loss of gap junctional intercellular communication in tumorigenesis and metastasis has been controversial. While some of the stages of tumorigenesis and metastasis, such as uncontrolled cell division and cellular detachment, would necessitate the loss of intercellular junctions, other stages, such as intravasation, endothelial attachment, and vascularization, likely require increased cell-cell contact. We hypothesized that, in this multi-stage scheme, connexin-43 is centrally involved as a cell adhesion molecule mediating metastatic tumor attachment to the pulmonary endothelium.</p> <p>Methods</p> <p>Tumor cell attachment to pulmonary vasculature, tumor growth, and connexin-43 expression was studied in metastatic lung tumor sections obtained after tail-vein injection into nude mice of syngeneic breast cancer cell lines, overexpressing wild type connexin-43 or dominant-negatively mutated connexin-43 proteins. High-resolution immunofluorescence microscopy and Western blot analysis was performed using a connexin-43 monoclonal antibody. Calcein Orange Red AM dye transfer by fluorescence imaging was used to evaluate the gap junction function.</p> <p>Results</p> <p>Adhesion of breast cancer cells to the pulmonary endothelium increased with cancer cells overexpressing connexin-43 and markedly decreased with cells expressing dominant-negative connexin-43. Upregulation of connexin-43 was observed in tumor cell-endothelial cell contact areas <it>in vitro </it>and <it>in vivo</it>, and in areas of intratumor blood vessels and in micrometastatic foci.</p> <p>Conclusion</p> <p>Connexin-43 facilitates metastatic 'homing' by increasing adhesion of cancer cells to the lung endothelial cells. The marked upregulation of connexin-43 in tumor cell-endothelial cell contact areas, whether in preexisting 'homing' vessels or in newly formed tumor vessels, suggests that connexin-43 can serve as a potential marker of micrometastases and tumor vasculature and that it may play a role in the early incorporation of endothelial cells into small tumors as seeds for vasculogenesis.</p

    RANKL Is a Downstream Mediator for Insulin-Induced Osteoblastic Differentiation of Vascular Smooth Muscle Cells

    Get PDF
    Several reports have shown that circulating insulin level is positively correlated with arterial calcification; however, the relationship between insulin and arterial calcification remains controversial and the mechanism involved is still unclear. We used calcifying vascular smooth muscle cells (CVSMCs), a specific subpopulation of vascular smooth muscle cells that could spontaneously express osteoblastic phenotype genes and form calcification nodules, to investigate the effect of insulin on osteoblastic differentiation of CVSMCs and the cell signals involved. Our experiments demonstrated that insulin could promote alkaline phosphatase (ALP) activity, osteocalcin expression and the formation of mineralized nodules in CVSMCs. Suppression of receptor activator of nuclear factor ΞΊB ligand (RANKL) with small interfering RNA (siRNA) abolished the insulin-induced ALP activity. Insulin induced the activation of extracellular signal-regulated kinase (ERK)1/2, mitogen-activated protein kinase (MAPK) and RAC-alpha serine/threonine-protein kinase (Akt). Furthermore, pretreatment of human osteoblasts with the ERK1/2 inhibitor PD98059, but not the phosphoinositide 3-kinase (PI3K) inhibitor, LY294002, or the Akt inhibitor, 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate (HIMO), abolished the insulin-induced RANKL secretion and blocked the promoting effect of insulin on ALP activities of CVSMCs. Recombinant RANKL protein recovered the ALP activities decreased by RANKL siRNA in insulin-stimulated CVSMCs. These data demonstrated that insulin could promote osteoblastic differentiation of CVSMCs by increased RANKL expression through ERK1/2 activation, but not PI3K/Akt activation

    Cost-effectiveness of early detection of breast cancer in Catalonia (Spain)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer (BC) causes more deaths than any other cancer among women in Catalonia. Early detection has contributed to the observed decline in BC mortality. However, there is debate on the optimal screening strategy. We performed an economic evaluation of 20 screening strategies taking into account the cost over time of screening and subsequent medical costs, including diagnostic confirmation, initial treatment, follow-up and advanced care.</p> <p>Methods</p> <p>We used a probabilistic model to estimate the effect and costs over time of each scenario. The effect was measured as years of life (YL), quality-adjusted life years (QALY), and lives extended (LE). Costs of screening and treatment were obtained from the Early Detection Program and hospital databases of the IMAS-Hospital del Mar in Barcelona. The incremental cost-effectiveness ratio (ICER) was used to compare the relative costs and outcomes of different scenarios.</p> <p>Results</p> <p>Strategies that start at ages 40 or 45 and end at 69 predominate when the effect is measured as YL or QALYs. Biennial strategies 50-69, 45-69 or annual 45-69, 40-69 and 40-74 were selected as cost-effective for both effect measures (YL or QALYs). The ICER increases considerably when moving from biennial to annual scenarios. Moving from no screening to biennial 50-69 years represented an ICER of 4,469€ per QALY.</p> <p>Conclusions</p> <p>A reduced number of screening strategies have been selected for consideration by researchers, decision makers and policy planners. Mathematical models are useful to assess the impact and costs of BC screening in a specific geographical area.</p

    Root Herbivore Effects on Aboveground Multitrophic Interactions: Patterns, Processes and Mechanisms

    Get PDF
    In terrestrial food webs, the study of multitrophic interactions traditionally has focused on organisms that share a common domain, mainly above ground. In the last two decades, it has become clear that to further understand multitrophic interactions, the barrier between the belowground and aboveground domains has to be crossed. Belowground organisms that are intimately associated with the roots of terrestrial plants can influence the levels of primary and secondary chemistry and biomass of aboveground plant parts. These changes, in turn, influence the growth, development, and survival of aboveground insect herbivores. The discovery that soil organisms, which are usually out of sight and out of mind, can affect plant-herbivore interactions aboveground raised the question if and how higher trophic level organisms, such as carnivores, could be influenced. At present, the study of above-belowground interactions is evolving from interactions between organisms directly associated with the plant roots and shoots (e.g., root feeders - plant - foliar herbivores) to interactions involving members of higher trophic levels (e.g., parasitoids), as well as non-herbivorous organisms (e.g., decomposers, symbiotic plant mutualists, and pollinators). This multitrophic approach linking above- and belowground food webs aims at addressing interactions between plants, herbivores, and carnivores in a more realistic community setting. The ultimate goal is to understand the ecology and evolution of species in communities and, ultimately how community interactions contribute to the functioning of terrestrial ecosystems. Here, we summarize studies on the effects of root feeders on aboveground insect herbivores and parasitoids and discuss if there are common trends. We discuss the mechanisms that have been reported to mediate these effects, from changes in concentrations of plant nutritional quality and secondary chemistry to defense signaling. Finally, we discuss how the traditional framework of fixed paired combinations of root- and shoot-related organisms feeding on a common plant can be transformed into a more dynamic and realistic framework that incorporates community variation in species, densities, space and time, in order to gain further insight in this exciting and rapidly developing field

    A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System

    Get PDF
    The global agriculture, aquaculture, fishing and forestry (AAFF) energy system is subject to three unsustainable trends: (1) the approaching biophysical limits of AAFF; (2) the role of AAFF as a driver of environmental degradation; and (3) the long-term declining energy efficiency of AAFF due to growing dependence on fossil fuels. In response, we conduct a net energy analysis for the period 1971–2017 and review existing studies to investigate the global AAFF energy system and its vulnerability to the three unsustainable trends from an energetic perspective. We estimate the global AAFF system represents 27.9% of societies energy supply in 2017, with food energy representing 20.8% of societies total energy supply. We find that the net energy-return-on-investment (net EROI) of global AAFF increased from 2.87:1 in 1971 to 4.05:1 in 2017. We suggest that rising net EROI values are being fuelled in part by β€˜depleting natures accumulated energy stocks’. We also find that the net energy balance of AAFF increased by 130% in this period, with at the same time a decrease in both the proportion of rural residents and also the proportion of the total population working in AAFFβ€”which decreased from 19.8 to 10.3%. However, this comes at the cost of growing fossil fuel dependency which increased from 43.6 to 62.2%. Given the increasing probability of near-term fossil fuel scarcity, the growing impacts of climate change and environmental degradation, and the approaching biophysical limits of global AAFF, β€˜Odum’s hoax’ is likely soon to be revealed
    • …
    corecore