27 research outputs found

    Entorhinal cortex volume is associated with episodic memory related brain activation in normal aging and amnesic mild cognitive impairment

    Get PDF
    The present study examined the relationship between entorhinal cortex and hippocampal volume with fMRI activation during episodic memory function in elderly controls with no cognitive impairment and individuals with amnesic mild cognitive impairment (aMCI). Both groups displayed limited evidence for a relationship between hippocampal volume and fMRI activation. Smaller right entorhinal cortex volume was correlated with reduced activation in left and right medial frontal cortex (BA 8) during incidental encoding for both aMCI and elderly controls. However, during recognition, smaller left entorhinal cortex volume correlated with reduced activation in right BA 8 for the control group, but greater activation for the aMCI group. There was no significant relationship between entorhinal cortex volume and activation during intentional encoding in either group. The recognition-related dissociation in structure/function relationships in aMCI paralleled our behavioral findings, where individuals with aMCI displayed poorer performance relative to controls during recognition, but not encoding. Taken together, these results suggest that the relationship between entorhinal cortex volume and fMRI activation during episodic memory function is altered in individuals with aMCI.Illinois. Department of Public HealthNational Institute on Aging (Grant P01 AG09466)National Institute on Aging (Grant P30 AG10161)National Institute on Aging (Grant R01 AG017917)National Institute on Aging (Grant T32 AG000257

    Regulation of Axonal HCN1 Trafficking in Perforant Path Involves Expression of Specific TRIP8b Isoforms

    Get PDF
    The functions of HCN channels in neurons depend critically on their subcellular localization, requiring fine-tuned machinery that regulates subcellular channel trafficking. Here we provide evidence that regulatory mechanisms governing axonal HCN channel trafficking involve association of the channels with specific isoforms of the auxiliary subunit TRIP8b. In the medial perforant path, which normally contains HCN1 channels in axon terminals in immature but not in adult rodents, we found axonal HCN1 significantly increased in adult mice lacking TRIP8b (TRIP8b−/−). Interestingly, adult mice harboring a mutation that results in expression of only the two most abundant TRIP8b isoforms (TRIP8b[1b/2]−/−) exhibited an HCN1 expression pattern similar to wildtype mice, suggesting that presence of one or both of these isoforms (TRIP8b(1a), TRIP8b(1a-4)) prevents HCN1 from being transported to medial perforant path axons in adult mice. Concordantly, expression analyses demonstrated a strong increase of expression of both TRIP8b isoforms in rat entorhinal cortex with age. However, when overexpressed in cultured entorhinal neurons of rats, TRIP8b(1a), but not TRIP8b(1a-4), altered substantially the subcellular distribution of HCN1 by promoting somatodendritic and reducing axonal expression of the channels. Taken together, we conclude that TRIP8b isoforms are important regulators of HCN1 trafficking in entorhinal neurons and that the alternatively-spliced isoform TRIP8b(1a) could be responsible for the age-dependent redistribution of HCN channels out of perforant path axon terminals

    Proteomic and Phospho-Proteomic Profile of Human Platelets in Basal, Resting State: Insights into Integrin Signaling

    Get PDF
    During atherogenesis and vascular inflammation quiescent platelets are activated to increase the surface expression and ligand affinity of the integrin αIIbβ3 via inside-out signaling. Diverse signals such as thrombin, ADP and epinephrine transduce signals through their respective GPCRs to activate protein kinases that ultimately lead to the phosphorylation of the cytoplasmic tail of the integrin αIIbβ3 and augment its function. The signaling pathways that transmit signals from the GPCR to the cytosolic domain of the integrin are not well defined. In an effort to better understand these pathways, we employed a combination of proteomic profiling and computational analyses of isolated human platelets. We analyzed ten independent human samples and identified a total of 1507 unique proteins in platelets. This is the most comprehensive platelet proteome assembled to date and includes 190 membrane-associated and 262 phosphorylated proteins, which were identified via independent proteomic and phospho-proteomic profiling. We used this proteomic dataset to create a platelet protein-protein interaction (PPI) network and applied novel contextual information about the phosphorylation step to introduce limited directionality in the PPI graph. This newly developed contextual PPI network computationally recapitulated an integrin signaling pathway. Most importantly, our approach not only provided insights into the mechanism of integrin αIIbβ3 activation in resting platelets but also provides an improved model for analysis and discovery of PPI dynamics and signaling pathways in the future
    corecore