2,101 research outputs found

    Absolute Determination of the 22Na(p,g) Reaction Rate in Novae

    Full text link
    Gamma-ray telescopes in orbit around the Earth are searching for evidence of the elusive radionuclide 22Na produced in novae. Previously published uncertainties in the dominant destructive reaction, 22Na(p,g)23Mg, indicated new measurements in the proton energy range of 150 to 300 keV were needed to constrain predictions. We have measured the resonance strengths, energies, and branches directly and absolutely by using protons from the University of Washington accelerator with a specially designed beamline, which included beam rastering and cold vacuum protection of the 22Na implanted targets. The targets, fabricated at TRIUMF-ISAC, displayed minimal degradation over a ~ 20 C bombardment as a result of protective layers. We avoided the need to know the stopping power, and hence the target composition, by extracting resonance strengths from excitation functions integrated over proton energy. Our measurements revealed that resonance strengths for E_p = 213, 288, 454, and 610 keV are stronger by factors of 2.4 to 3.2 than previously reported. Upper limits have been placed on proposed resonances at 198-, 209-, and 232-keV. We have re-evaluated the 22Na(p,g) reaction rate, and our measurements indicate the resonance at 213 keV makes the most significant contribution to 22Na destruction in novae. Hydrodynamic simulations including our rate indicate that the expected abundance of 22Na ejecta from a classical nova is reduced by factors between 1.5 and 2, depending on the mass of the white-dwarf star hosting the nova explosion.Comment: 20 pages, 18 figures; shortened paper, accepted in Phys. Rev.

    InAs nanowire transistors with multiple, independent wrap-gate segments

    Full text link
    We report a method for making horizontal wrap-gate nanowire transistors with up to four independently controllable wrap-gated segments. While the step up to two independent wrap-gates requires a major change in fabrication methodology, a key advantage to this new approach, and the horizontal orientation more generally, is that achieving more than two wrap-gate segments then requires no extra fabrication steps. This is in contrast to the vertical orientation, where a significant subset of the fabrication steps needs to be repeated for each additional gate. We show that cross-talk between adjacent wrap-gate segments is negligible despite separations less than 200 nm. We also demonstrate the ability to make multiple wrap-gate transistors on a single nanowire using the exact same process. The excellent scalability potential of horizontal wrap-gate nanowire transistors makes them highly favourable for the development of advanced nanowire devices and possible integration with vertical wrap-gate nanowire transistors in 3D nanowire network architectures.Comment: 18 pages, 5 figures, In press for Nano Letters (DOI below

    Cepheid variables in the LMC cluster NGC 1866. I. New BVRI CCD photometry

    Full text link
    We report BV(RI)c CCD photometric data for a group of seven Cepheid variables in the young, rich cluster NGC 1866 in the Large Magellanic Cloud. The photometry was obtained as part of a program to determine accurate distances to these Cepheids by means of the infrared surface brightness technique, and to improve the LMC Cepheid database for constructing Cepheid PL and PLC relations. Using the new data together with data from the literature, we have determined improved periods for all variables. For five fundamental mode pulsators, the light curves are now of excellent quality and will lead to accurate distance and radius determinations once complete infrared light curves and radial velocity curves for these variables become available.Comment: To appear in ApJ Supp., AASTeX, 24 pages, 8 tables, 8 figure

    Peer Support Specialists and Service Users’ Perspectives on privacy, confidentiality, and security of digital mental health

    Get PDF
    As the digitalization of mental health systems progresses, the ethical and social debate on the use of these mental health technologies has seldom been explored among end-users. This article explores how service users (e.g., patients and users of mental health services) and peer support specialists understand and perceive issues of privacy, confidentiality, and security of digital mental health interventions. Semi-structured qualitative interviews were conducted among service users (n = 17) and peer support specialists (n = 15) from a convenience sample at an urban community mental health center in the United States. We identified technology ownership and use, lack of technology literacy including limited understanding of privacy, confidentiality, and security as the main barriers to engagement among service users. Peers demonstrated a high level of technology engagement, literacy of digital mental health tools, and a more comprehensive awareness of digital mental health ethics. We recommend peer support specialists as a potential resource to facilitate the ethical engagement of digital mental health interventions for service users. Finally, engaging potential end-users in the development cycle of digital mental health support platforms and increased privacy regulations may lead the field to a better understanding of effective uses of technology for people with mental health conditions. This study contributes to the ongoing debate of digital mental health ethics, data justice, and digital mental health by providing a first-hand experience of digital ethics from end-users’ perspectives.publishedVersio

    CARMA Large Area Star Formation Survey: Observational Analysis of Filaments in the Serpens South Molecular Cloud

    Get PDF
    We present the N2H+(J=1-0) map of the Serpens South molecular cloud obtained as part of the CARMA Large Area Star Formation Survey (CLASSy). The observations cover 250 square arcminutes and fully sample structures from 3000 AU to 3 pc with a velocity resolution of 0.16 km/s, and they can be used to constrain the origin and evolution of molecular cloud filaments. The spatial distribution of the N2H+ emission is characterized by long filaments that resemble those observed in the dust continuum emission by Herschel. However, the gas filaments are typically narrower such that, in some cases, two or three quasi-parallel N2H+ filaments comprise a single observed dust continuum filament. The difference between the dust and gas filament widths casts doubt on Herschel ability to resolve the Serpens South filaments. Some molecular filaments show velocity gradients along their major axis, and two are characterized by a steep velocity gradient in the direction perpendicular to the filament axis. The observed velocity gradient along one of these filaments was previously postulated as evidence for mass infall toward the central cluster, but these kind of gradients can be interpreted as projection of large-scale turbulence.Comment: 12 pages, 4 figures, published in ApJL (July 2014

    CARMA Large Area Star Formation Survey: Project Overview with Analysis of Dense Gas Structure and Kinematics in Barnard 1

    Get PDF
    We present details of the CARMA Large Area Star Formation Survey (CLASSy), while focusing on observations of Barnard 1. CLASSy is a CARMA Key Project that spectrally imaged N2H+, HCO+, and HCN (J=1-0 transitions) across over 800 square arcminutes of the Perseus and Serpens Molecular Clouds. The observations have angular resolution near 7" and spectral resolution near 0.16 km/s. We imaged ~150 square arcminutes of Barnard 1, focusing on the main core, and the B1 Ridge and clumps to its southwest. N2H+ shows the strongest emission, with morphology similar to cool dust in the region, while HCO+ and HCN trace several molecular outflows from a collection of protostars in the main core. We identify a range of kinematic complexity, with N2H+ velocity dispersions ranging from ~0.05-0.50 km/s across the field. Simultaneous continuum mapping at 3 mm reveals six compact object detections, three of which are new detections. A new non-binary dendrogram algorithm is used to analyze dense gas structures in the N2H+ position-position-velocity (PPV) cube. The projected sizes of dendrogram-identified structures range from about 0.01-0.34 pc. Size-linewidth relations using those structures show that non-thermal line-of-sight velocity dispersion varies weakly with projected size, while rms variation in the centroid velocity rises steeply with projected size. Comparing these relations, we propose that all dense gas structures in Barnard 1 have comparable depths into the sky, around 0.1-0.2 pc; this suggests that over-dense, parsec-scale regions within molecular clouds are better described as flattened structures rather than spherical collections of gas. Science-ready PPV cubes for Barnard 1 molecular emission are available for download.Comment: Accepted to The Astrophysical Journal (ApJ), 51 pages, 27 figures (some with reduced resolution in this preprint); Project website is at http://carma.astro.umd.edu/class

    Fast DNA translocation through a solid-state nanopore

    Full text link
    We report translocation experiments on double-strand DNA through a silicon oxide nanopore. Samples containing DNA fragments with seven different lengths between 2000 to 96000 basepairs have been electrophoretically driven through a 10 nm pore. We find a power-law scaling of the translocation time versus length, with an exponent of 1.26 ±\pm 0.07. This behavior is qualitatively different from the linear behavior observed in similar experiments performed with protein pores. We address the observed nonlinear scaling in a theoretical model that describes experiments where hydrodynamic drag on the section of the polymer outside the pore is the dominant force counteracting the driving. We show that this is the case in our experiments and derive a power-law scaling with an exponent of 1.18, in excellent agreement with our data.Comment: 5 pages, 2 figures. Submitted to PR

    A multi-wavelength analysis for interferometric (sub-)mm observations of protoplanetary disks: radial constraints on the dust properties and the disk structure

    Full text link
    Theoretical models of grain growth predict dust properties to change as a function of protoplanetary disk radius, mass, age and other physical conditions. We lay down the methodology for a multi-wavelength analysis of (sub-)mm and cm continuum interferometric observations to constrain self-consistently the disk structure and the radial variation of the dust properties. The computational architecture is massively parallel and highly modular. The analysis is based on the simultaneous fit in the uv-plane of observations at several wavelengths with a model for the disk thermal emission and for the dust opacity. The observed flux density at the different wavelengths is fitted by posing constraints on the disk structure and on the radial variation of the grain size distribution. We apply the analysis to observations of three protoplanetary disks (AS 209, FT Tau, DR Tau) for which a combination of spatially resolved observations in the range ~0.88mm to ~10mm is available (from SMA, CARMA, and VLA), finding evidence of a decreasing maximum dust grain size (a_max) with radius. We derive large a_max values up to 1 cm in the inner disk between 15 and 30 AU and smaller grains with a_max~1 mm in the outer disk (R > 80AU). In this paper we develop a multi-wavelength analysis that will allow this missing quantity to be constrained for statistically relevant samples of disks and to investigate possible correlations with disk or stellar parameters.Comment: 19 pages, 15 figures, accepted for publication in A&
    • …
    corecore