15 research outputs found

    Coherent J/ψ and ψ photoproduction at midrapidity in ultra-peripheral Pb–Pb collisions at √sNN = 5.02 TeV

    Get PDF
    The coherent photoproduction of J/ψJ/ψ and ψâ€Čψâ€Č mesons was measured in ultra-peripheral Pb–Pb collisions at a center-of-mass energy sNN−−−√ = 5.02sNN = 5.02 TeV with the ALICE detector. Charmonia are detected in the central rapidity region for events where the hadronic interactions are strongly suppressed. The J/ψJ/ψ is reconstructed using the dilepton (l+l−l+l−) and proton–antiproton decay channels, while for the ψâ€Čψâ€Č the dilepton and the l+l−π+π−l+l−π+π− decay channels are studied. The analysis is based on an event sample corresponding to an integrated luminosity of about 233 ÎŒb−1ÎŒb−1. The results are compared with theoretical models for coherent J/ψJ/ψ and ψâ€Čψâ€Č photoproduction. The coherent cross section is found to be in a good agreement with models incorporating moderate nuclear gluon shadowing of about 0.64 at a Bjorken-x of around 6×10−46×10−4, such as the EPS09 parametrization, however none of the models is able to fully describe the rapidity dependence of the coherent J/ψJ/ψ cross section including ALICE measurements at forward rapidity. The ratio of ψâ€Čψâ€Č to J/ψJ/ψ coherent photoproduction cross sections was also measured and found to be consistent with the one for photoproduction off protons.publishedVersio

    Measurement of beauty and charm production in pp collisions at √s = 5.02 TeV via non-prompt and prompt D mesons

    Get PDF
    The pT-differential production cross sections of prompt and non-prompt (produced in beauty-hadron decays) D mesons were measured by the ALICE experiment at midrapidity (|y| < 0.5) in proton-proton collisions at s√s = 5.02 TeV. The data sample used in the analysis corresponds to an integrated luminosity of (19.3 ± 0.4) nb−1. D mesons were reconstructed from their decays D0 → K−π+, D+ → K−π+π+, and D+s→φπ+→K−K+π+Ds+→φπ+→K−K+π+ and their charge conjugates. Compared to previous measurements in the same rapidity region, the cross sections of prompt D+ and D+sDs+ mesons have an extended pT coverage and total uncertainties reduced by a factor ranging from 1.05 to 1.6, depending on pT, allowing for a more precise determination of their pT-integrated cross sections. The results are well described by perturbative QCD calculations. The fragmentation fraction of heavy quarks to strange mesons divided by the one to non-strange mesons, fs/(fu + fd), is compatible for charm and beauty quarks and with previous measurements at different centre-of-mass energies and collision systems. The bbÂŻÂŻÂŻbbÂŻ production cross section per rapidity unit at midrapidity, estimated from non-prompt D-meson measurements, is dσbbÂŻÂŻÂŻ/dy∣∣|y|<0.5=34.5±2.4(stat)+4.7−2.9(tot.syst)dσbbÂŻ/dy||y|<0.5=34.5±2.4(stat)−2.9+4.7(tot.syst) ÎŒb. It is compatible with previous measurements at the same centre-of-mass energy and with the cross section pre- dicted by perturbative QCD calculations.publishedVersio

    Energy dependence of ϕ meson production at forward rapidity in pp collisions at the LHC

    Get PDF
    The production of ϕ\phi mesons has been studied in pp collisions at LHC energies with the ALICE detector via the dimuon decay channel in the rapidity region 2.5<y<42.5< y < 4. Measurements of the differential cross section d2σ/dydpT\mathrm{d}^2\sigma /\mathrm{d}y \mathrm{d}p_{\mathrm {T}} are presented as a function of the transverse momentum (pTp_{\mathrm {T}}) at the center-of-mass energies s=5.02\sqrt{s}=5.02, 8 and 13 TeV and compared with the ALICE results at midrapidity. The differential cross sections at s=5.02\sqrt{s}=5.02 and 13 TeV are also studied in several rapidity intervals as a function of pTp_{\mathrm {T}}, and as a function of rapidity in three pTp_{\mathrm {T}} intervals. A hardening of the pTp_{\mathrm {T}}-differential cross section with the collision energy is observed, while, for a given energy, pTp_{\mathrm {T}} spectra soften with increasing rapidity and, conversely, rapidity distributions get slightly narrower at increasing pTp_{\mathrm {T}}. The new results, complementing the published measurements at s=2.76\sqrt{s}=2.76 and 7 TeV, allow one to establish the energy dependence of ϕ\phi meson production and to compare the measured cross sections with phenomenological models. None of the considered models manages to describe the evolution of the cross section with pTp_{\mathrm {T}} and rapidity at all the energies.publishedVersio

    First measurement of the |t|-dependence of coherent J/ψ photonuclear production

    Get PDF
    The first measurement of the cross section for coherent J/Psi photoproduction as a function of vertical bar t vertical bar, the square of the momentum transferred between the incoming and outgoing target nucleus, is presented. The data were measured with the ALICE detector in ultra-peripheral Pb-Pbcollisions at a centre-of-mass energy per nucleon pair root s(NN) = 5.02 TeV with the J/Psi produced in the central rapidity region vertical bar y vertical bar < 0.8, which corresponds to the small Bjorken-xrange (0.3 - 1.4) x 10(-3). The measured vertical bar t vertical bar-dependence is not described by computations based only on the Pb nuclear form factor, while the photonuclear cross section is better reproduced by models including shadowing according to the leading-twist approximation, or gluon-saturation effects from the impact-parameter dependent Balitsky-Kovchegov equation. These new results are therefore a valid tool to constrain the relevant model parameters and to investigate the transverse gluonic structure at very low Bjorken- x. (C) 2021 The Author(s). Published by Elsevier B.V

    ϒ production in p–Pb collisions at sNN=8.16 TeV

    Get PDF
    ϒproduction in p–Pbinteractions is studied at the centre-of-mass energy per nucleon–nucleon collision √sNN=8.16TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 &lt;3.53and −4.46 &lt;−2.96, down to zero transverse momentum. In this work, results on the ϒ(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the ϒ(1S) yields with respect to ppcollisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the ϒ(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the ϒ(1S). A first measurement of the ϒ(3S) has also been performed. Finally, results are compared with previous ALICE measurements in p–Pbcollisions at √sNN=5.02TeV and with theoretical calculations

    Inclusive heavy-flavour production at central and forward rapidity in Xe–Xe collisions at √sNN = 5.44 TeV

    Get PDF
    The first measurements of the production of muons and electrons from heavy-flavour hadron decays in Xe–Xe collisions at sNN=5.44 TeV, using the ALICE detector at the LHC, are reported. The measurement of the nuclear modification factor RAA is performed as a function of transverse momentum pT in several centrality classes at forward rapidity (2.5<y<4) and midrapidity (|y|<0.8) for muons and electrons from heavy-flavour hadron decays, respectively. A suppression by a factor up to about 2.5 compared to the binary-scaled pp reference is observed in central collisions at both central and forward rapidities. The RAA of muons from heavy-flavour hadron decays is compared to previous measurements in Pb–Pb collisions at sNN=5.02 TeV. When the nuclear modification factors are compared in the centrality classes 0–10% for Xe–Xe collisions and 10–20% for Pb–Pb collisions, which have similar charged-particle multiplicity density, a similar suppression, with RAA∌0.4 in the pT interval 4<pT<8 GeV/c, is observed. The comparison of the measured RAA values in the two collision systems brings new insights on the properties of the quark-gluon plasma by investigating the system-size and geometry dependence of medium-induced parton energy loss. The results of muons and electrons from heavy-flavour hadron decays provide new constraints to model calculations

    Λ+c production in pp and in p-Pb collisions at √sNN=5.02 TeV

    No full text
    The production cross section of prompt Λ+c charm baryons was measured with the ALICE detector at the LHC at midrapidity in proton-proton (pp) and proton-lead (p–Pb) collisions at a center-of-mass energy per nucleon pair of √sNN=5.02 TeV. The Λ+c and Λ¯−c baryons were reconstructed in the hadronic decay channels Λ+c→pK−π+ and Λ+c→pK0S and respective charge conjugates. The measured differential cross sections as a function of transverse momentum (pT) and the pT-integrated Λ+c production cross section in pp and in p–Pb collisions are presented. The Λ+c nuclear modification factor (RpPb), calculated from the cross sections in pp and in p–Pb collisions, is presented and compared with the RpPb of D mesons. The Λ+c/D0 ratio is also presented and compared with the light-flavor baryon-to-meson ratios p/π and Λ/K0S, and measurements from other LHC experiments. The results are compared to predictions from model calculations and Monte Carlo event generators

    Λc+ Production and Baryon-to-Meson Ratios in pp and p -Pb Collisions at sNN =5.02 TeV at the LHC

    Get PDF
    The prompt production of the charm baryon Î›ĂŸ c and the Î›ĂŸ c =D0 production ratios were measured at midrapidity with the ALICE detector in pp and p-Pb collisions at ffiffiffiffiffiffiffi sNN p ÂŒ 5.02 TeV. These new measurements show a clear decrease of the Î›ĂŸ c =D0 ratio with increasing transverse momentum (pT ) in both collision systems in the range 2 < pT < 12 GeV=c, exhibiting similarities with the light-flavor baryon-tomeson ratios p=π and Λ=K0 S. At low pT, predictions that include additional color-reconnection mechanisms beyond the leading-color approximation, assume the existence of additional higher-mass charm-baryon states, or include hadronization via coalescence can describe the data, while predictions driven by charmquark fragmentation processes measured in eĂŸe− and e−p collisions significantly underestimate the data. The results presented in this Letter provide significant evidence that the established assumption of universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to describe charm-baryon production in hadronic collisions at LHC energies

    Long- and short-range correlations and their event-scale dependence in high-multiplicity pp collisions at √s = 13 TeV

    Get PDF
    Two-particle angular correlations are measured in high-multiplicity protonproton collisions at √ s = 13 TeV by the ALICE Collaboration. The yields of particle pairs at short-(∆η ∌ 0) and long-range (1.6 < |∆η| < 1.8) in pseudorapidity are extracted on the near-side (∆ϕ ∌ 0). They are reported as a function of transverse momentum (pT) in the range 1 < pT < 4 GeV/c. Furthermore, the event-scale dependence is studied for the first time by requiring the presence of high-pT leading particles or jets for varying pT thresholds. The results demonstrate that the long-range “ridge” yield, possibly related to the collective behavior of the system, is present in events with high-pT processes as well. The magnitudes of the short- and long-range yields are found to grow with the event scale. The results are compared to EPOS LHC and PYTHIA 8 calculations, with and without string-shoving interactions. It is found that while both models describe the qualitative trends in the data, calculations from EPOS LHC show a better quantitative agreement for the pT dependency, while overestimating the event-scale dependency

    Inclusive heavy-flavour production at central and forward rapidity in Xe-Xe collisions at sNN\sqrt {s_{NN}}=5.44\$ TeV

    No full text
    The first measurements of the production of muons and electrons from heavy-flavour hadron decays in Xe–Xe collisions at √sNN = 5.44 TeV, using the ALICE detector at the LHC, are reported. The measurement of the nuclear modification factor RAA is performed as a function of transverse momentum pT in several centrality classes at forward rapidity (2.5 &lt; y &lt; 4) and midrapidity (|y| &lt; 0.8) for muons and electrons from heavy-flavour hadron decays, respectively. A suppression by a factor up to about 2.5 compared to the binary-scaled pp reference is observed in central collisions at both central and forward rapidities. The RAA of muons from heavy-flavour hadron decays is compared to previous measurements in Pb–Pb collisions at √sNN = 5.02 TeV. When the nuclear modification factors are compared in the centrality classes 0–10% for Xe–Xe collisions and 10–20% for Pb–Pb collisions, which have similar charged-particle multiplicity density, a similar suppression, with RAA ∌ 0.4 in the pT interval 4 &lt; pT &lt; 8 GeV/c, is observed. The comparison of the measured RAA values in the two collision systems brings new insights on the properties of the quark-gluon plasma by investigating the system-size and geometry dependence of medium-induced parton energy loss. The results of muons and electrons from heavy-flavour hadron decays provide new constraints to model calculations
    corecore