151 research outputs found

    Testosterone levels are negatively associated with childlessness in males, but positively related to offspring count in fathers

    Get PDF
    Variation in testosterone (T) is thought to affect the allocation of effort between reproductive and parenting strategies. Here, using a large sample of elderly American men (n = 754) and women (n = 669) we examined the relationship between T and self-reported parenthood, as well as the relationship between T and number of reported children. Results supported previous findings from the literature, showing that fathers had lower T levels than men who report no children. Furthermore, we found that among fathers T levels were positively associated with the number of children a man reports close to the end of his lifespan. Results were maintained when controlling for a number of relevant factors such as time of T sampling, participant age, educational attainment, BMI, marital status and reported number of sex partners. In contrast, T was not associated with either motherhood or the number of children women had, suggesting that, at least in this sample, T does not influence the allocation of effort between reproductive and parenting strategies among women. Findings from this study contribute to the growing body of literature suggesting that, among men, pair bonding and paternal care are associated with lower T levels, while searching and acquiring sex partners is associated with higher T levels.27 Jun 2013: Pollet TV, Cobey KD, van der Meij L (2013) Correction: Testosterone Levels Are Negatively Associated with Childlessness in Males, but Positively Related to Offspring Count in Fathers. PLoS ONE 8(6): 10.1371/annotation/bccccb7e-48a7-4594-b3e6-ce8c9d2489a2

    Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples

    Get PDF
    Numerous studies are currently underway to characterize the microbial communities inhabiting our world. These studies aim to dramatically expand our understanding of the microbial biosphere and, more importantly, hope to reveal the secrets of the complex symbiotic relationship between us and our commensal bacterial microflora. An important prerequisite for such discoveries are computational tools that are able to rapidly and accurately compare large datasets generated from complex bacterial communities to identify features that distinguish them

    The Regulation of miRNA-211 Expression and Its Role in Melanoma Cell Invasiveness

    Get PDF
    The immediate molecular mechanisms behind invasive melanoma are poorly understood. Recent studies implicate microRNAs (miRNAs) as important agents in melanoma and other cancers. To investigate the role of miRNAs in melanoma, we subjected human melanoma cell lines to miRNA expression profiling, and report a range of variations in several miRNAs. Specifically, compared with expression levels in melanocytes, levels of miR-211 were consistently reduced in all eight non-pigmented melanoma cell lines we examined; they were also reduced in 21 out of 30 distinct melanoma samples from patients, classified as primary in situ, regional metastatic, distant metastatic, and nodal metastatic. The levels of several predicted target mRNAs of miR-211 were reduced in melanoma cell lines that ectopically expressed miR-211. In vivo target cleavage assays confirmed one such target mRNA encoded by KCNMA1. Mutating the miR-211 binding site seed sequences at the KCNMA1 3′-UTR abolished target cleavage. KCNMA1 mRNA and protein expression levels varied inversely with miR-211 levels. Two different melanoma cell lines ectopically expressing miR-211 exhibited significant growth inhibition and reduced invasiveness compared with the respective parental melanoma cell lines. An shRNA against KCNMA1 mRNA also demonstrated similar effects on melanoma cells. miR-211 is encoded within the sixth intron of TRPM1, a candidate suppressor of melanoma metastasis. The transcription factor MITF, important for melanocyte development and function, is needed for high TRPM1 expression. MITF is also needed for miR-211 expression, suggesting that the tumor-suppressor activities of MITF and/or TRPM1 may at least partially be due to miR-211's negative post transcriptional effects on the KCNMA1 transcript. Given previous reports of high KCNMA1 levels in metastasizing melanoma, prostate cancer and glioma, our findings that miR-211 is a direct posttranscriptional regulator of KCNMA1 expression as well as the dependence of this miRNA's expression on MITF activity, establishes miR-211 as an important regulatory agent in human melanoma

    Potential Associations between Severity of Infection and the Presence of Virulence-Associated Genes in Clinical Strains of Staphylococcus aureus

    Get PDF
    BACKGROUND: The clinical spectrum of Staphylococcus aureus infection ranges from asymptomatic nasal carriage to osteomyelitis, infective endocarditis (IE) and death. In this study, we evaluate potential association between the presence of specific genes in a collection of prospectively characterized S. aureus clinical isolates and clinical outcome. METHODOLOGY/PRINCIPAL FINDINGS: Two hundred thirty-nine S. aureus isolates (121 methicillin-resistant S. aureus [MRSA] and 118 methicillin-susceptible S. aureus [MSSA]) were screened by array comparative genomic hybridization (aCGH) to identify genes implicated in complicated infections. After adjustment for multiple tests, 226 genes were significantly associated with severity of infection. Of these 226 genes, 185 were not in the SCCmec element. Within the 185 non-SCCmec genes, 171 were less common and 14 more common in the complicated infection group. Among the 41 genes in the SCCmec element, 37 were more common and 4 were less common in the complicated group. A total of 51 of the 2014 sequences evaluated, 14 non-SCCmec and 37 SCCmec, were identified as genes of interest. CONCLUSIONS/SIGNIFICANCE: Of the 171 genes less common in complicated infections, 152 are of unknown function and may contribute to attenuation of virulence. The 14 non-SCCmec genes more common in complicated infections include bacteriophage-encoded genes such as regulatory factors and autolysins with potential roles in tissue adhesion or biofilm formation

    cAMP Response Element Binding Protein Is Required for Differentiation of Respiratory Epithelium during Murine Development

    Get PDF
    The cAMP response element binding protein 1 (Creb1) transcription factor regulates cellular gene expression in response to elevated levels of intracellular cAMP. Creb1−/− fetal mice are phenotypically smaller than wildtype littermates, predominantly die in utero and do not survive after birth due to respiratory failure. We have further investigated the respiratory defect of Creb1−/− fetal mice during development. Lungs of Creb1−/− fetal mice were pale in colour and smaller than wildtype controls in proportion to their reduced body size. Creb1−/− lungs also did not mature morphologically beyond E16.5 with little or no expansion of airway luminal spaces, a phenotype also observed with the Creb1−/− lung on a Crem−/− genetic background. Creb1 was highly expressed throughout the lung at all stages examined, however activation of Creb1 was detected primarily in distal lung epithelium. Cell differentiation of E17.5 Creb1−/− lung distal epithelium was analysed by electron microscopy and showed markedly reduced numbers of type-I and type-II alveolar epithelial cells. Furthermore, immunomarkers for specific lineages of proximal epithelium including ciliated, non-ciliated (Clara), and neuroendocrine cells showed delayed onset of expression in the Creb1−/− lung. Finally, gene expression analyses of the E17.5 Creb1−/− lung using whole genome microarray and qPCR collectively identified respiratory marker gene profiles and provide potential novel Creb1-regulated genes. Together, these results demonstrate a crucial role for Creb1 activity for the development and differentiation of the conducting and distal lung epithelium

    The graduation performance of technology business incubators in China's three tier cities: the role of incubator funding, technical support, and entrepreneurial mentoring

    Get PDF
    This study examines the effects of technology business incubator (TBI)’s funding, technical support and entrepreneurial mentoring on the graduation performance of new technology-based firms in China’s three tier cities. Using new dataset on all TBIs and incubated new technology-based firms from government surveys conducted over five consecutive years from 2009 to 2013 combined with archival and hand-collected data, we find the effects of incubator services on the early growth of new technology-based firms vary according to the local context. Technical support facilities and entrepreneurial mentoring from TBIs are found to have significantly and positively influenced the early development of the firms in the four most affluent tier 1 cities, whilst these effects become less pronounced for the tier 2 and tier 3 cities. These two services are also found to influence graduation performance in the government and university types of TBI respectively. Results support the notion that the effectiveness of an incubators services is shaped by the level of a city’s socio-economic development and that the city location of a TBI does impact the graduation performance of its incubatees

    Influence of the interaction between nodal fibroblast and breast cancer cells on gene expression

    Get PDF
    Our aim was to evaluate the interaction between breast cancer cells and nodal fibroblasts, by means of their gene expression profile. Fibroblast primary cultures were established from negative and positive lymph nodes from breast cancer patients and a similar gene expression pattern was identified, following cell culture. Fibroblasts and breast cancer cells (MDA-MB231, MDA-MB435, and MCF7) were cultured alone or co-cultured separated by a porous membrane (which allows passage of soluble factors) for comparison. Each breast cancer lineage exerted a particular effect on fibroblasts viability and transcriptional profile. However, fibroblasts from positive and negative nodes had a parallel transcriptional behavior when co-cultured with a specific breast cancer cell line. The effects of nodal fibroblasts on breast cancer cells were also investigated. MDA MB-231 cells viability and migration were enhanced by the presence of fibroblasts and accordingly, MDA-MB435 and MCF7 cells viability followed a similar pattern. MDA-MB231 gene expression profile, as evaluated by cDNA microarray, was influenced by the fibroblasts presence, and HNMT, COMT, FN3K, and SOD2 were confirmed downregulated in MDA-MB231 co-cultured cells with fibroblasts from both negative and positive nodes, in a new series of RT-PCR assays. In summary, transcriptional changes induced in breast cancer cells by fibroblasts from positive as well as negative nodes are very much alike in a specific lineage. However, fibroblasts effects are distinct in each one of the breast cancer lineages, suggesting that the inter-relationships between stromal and malignant cells are dependent on the intrinsic subtype of the tumor

    Imprinting of the Polycomb Group Gene MEDEA Serves as a Ploidy Sensor in Arabidopsis

    Get PDF
    Balanced maternal and paternal genome contributions are a requirement for successful seed development. Unbalanced contributions often cause seed abortion, a phenomenon that has been termed “triploid block.” Misregulation of imprinted regulatory genes has been proposed to be the underlying cause for abnormalities in growth and structure of the endosperm in seeds with deviating parental contributions. We identified a mutant forming unreduced pollen that enabled us to investigate direct effects of unbalanced parental genome contributions on seed development and to reveal the underlying molecular mechanism of dosage sensitivity. We provide evidence that parent-of-origin–specific expression of the Polycomb group (PcG) gene MEDEA is causally responsible for seed developmental aberrations in Arabidopsis seeds with increased paternal genome contributions. We propose that imprinted expression of PcG genes is an evolutionary conserved mechanism to balance parental genome contributions in embryo nourishing tissues

    Universal Plant DNA Barcode Loci May Not Work in Complex Groups: A Case Study with Indian Berberis Species

    Get PDF
    BACKGROUND: The concept of DNA barcoding for species identification has gained considerable momentum in animals because of fairly successful species identification using cytochrome oxidase I (COI). In plants, matK and rbcL have been proposed as standard barcodes. However, barcoding in complex genera is a challenging task. METHODOLOGY AND PRINCIPAL FINDINGS: We investigated the species discriminatory power of four reportedly most promising plant DNA barcoding loci (one from nuclear genome--ITS, and three from plastid genome--trnH-psbA, rbcL and matK) in species of Indian Berberis L. (Berberidaceae) and two other genera, Ficus L. (Moraceae) and Gossypium L. (Malvaceae). Berberis species were delineated using morphological characters. These characters resulted in a well resolved species tree. Applying both nucleotide distance and nucleotide character-based approaches, we found that none of the loci, either singly or in combinations, could discriminate the species of Berberis. ITS resolved all the tested species of Ficus and Gossypium and trnH-psbA resolved 82% of the tested species in Ficus. The highly regarded matK and rbcL could not resolve all the species. Finally, we employed amplified fragment length polymorphism test in species of Berberis to determine their relationships. Using ten primer pair combinations in AFLP, the data demonstrated incomplete species resolution. Further, AFLP analysis showed that there was a tendency of the Berberis accessions to cluster according to their geographic origin rather than species affiliation. CONCLUSIONS/SIGNIFICANCE: We reconfirm the earlier reports that the concept of universal barcode in plants may not work in a number of genera. Our results also suggest that the matK and rbcL, recommended as universal barcode loci for plants, may not work in all the genera of land plants. Morphological, geographical and molecular data analyses of Indian species of Berberis suggest probable reticulate evolution and thus barcode markers may not work in this case

    Regulation of Inflammatory Gene Expression in PBMCs by Immunostimulatory Botanicals

    Get PDF
    Many hundreds of botanicals are used in complementary and alternative medicine for therapeutic use as antimicrobials and immune stimulators. While there exists many centuries of anecdotal evidence and few clinical studies on the activity and efficacy of these botanicals, limited scientific evidence exists on the ability of these botanicals to modulate the immune and inflammatory responses. Using botanogenomics (or herbogenomics), this study provides novel insight into inflammatory genes which are induced in peripheral blood mononuclear cells following treatment with immunomodulatory botanical extracts. These results may suggest putative genes involved in the physiological responses thought to occur following administration of these botanical extracts. Using extracts from immunostimulatory herbs (Astragalus membranaceus, Sambucus cerulea, Andrographis paniculata) and an immunosuppressive herb (Urtica dioica), the data presented supports previous cytokine studies on these herbs as well as identifying additional genes which may be involved in immune cell activation and migration and various inflammatory responses, including wound healing, angiogenesis, and blood pressure modulation. Additionally, we report the presence of lipopolysaccharide in medicinally prepared extracts of these herbs which is theorized to be a natural and active component of the immunostimulatory herbal extracts. The data presented provides a more extensive picture on how these herbs may be mediating their biological effects on the immune and inflammatory responses
    corecore