36 research outputs found

    Identification of a novel toxicophore in anti-cancer chemotherapeutics that targets mitochondrial respiratory complex I

    Get PDF
    Disruption of mitochondrial function selectively targets tumour cells that are dependent on oxidative phosphorylation. However, due to their high energy demands, cardiac cells are disproportionately targeted by mitochondrial toxins resulting in a loss of cardiac function. An analysis of the effects of mubritinib on cardiac cells showed that this drug did not inhibit HER2 as reported, but directly inhibits mitochondrial respiratory complex I, reducing cardiac-cell beat rate, with prolonged exposure resulting in cell death. We used a library of chemical variants of mubritinib and showed that modifying the 1H-1,2,3-triazole altered complex I inhibition, identifying the heterocyclic 1,3-nitrogen motif as the toxicophore. The same toxicophore is present in a second anti-cancer therapeutic carboxyamidotriazole (CAI) and we demonstrate that CAI also functions through complex I inhibition, mediated by the toxicophore. Complex I inhibition is directly linked to anti-cancer cell activity, with toxicophore modification ablating the desired effects of these compounds on cancer cell proliferation and apoptosis

    N 1 -methylpseudouridylation of mRNA causes +1 ribosomal frameshifting

    Get PDF
    In vitro-transcribed (IVT) mRNAs are modalities that can combat human disease, exemplified by their use as vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IVT mRNAs are transfected into target cells, where they are translated into recombinant protein, and the biological activity or immunogenicity of the encoded protein exerts an intended therapeutic effect1, 2. Modified ribonucleotides are commonly incorporated into therapeutic IVT mRNAs to decrease their innate immunogenicity3–5, but their effects on mRNA translation fidelity have not been fully explored. Here we demonstrate that incorporation of N1-methylpseudouridine into mRNA results in +1 ribosomal frameshifting in vitro and that cellular immunity in mice and humans to +1 frameshifted products from BNT162b2 vaccine mRNA translation occurs after vaccination. The +1 ribosome frameshifting observed is probably a consequence of N1-methylpseudouridine-induced ribosome stalling during IVT mRNA translation, with frameshifting occurring at ribosome slippery sequences. However, we demonstrate that synonymous targeting of such slippery sequences provides an effective strategy to reduce the production of frameshifted products. Overall, these data increase our understanding of how modified ribonucleotides affect the fidelity of mRNA translation, and although there are no adverse outcomes reported from mistranslation of mRNA-based SARS-CoV-2 vaccines in humans, these data highlight potential off-target effects for future mRNA-based therapeutics and demonstrate the requirement for sequence optimization

    Functional analysis of the 5' untranslated region of the c-myc proto-oncogene

    Full text link
    Previous reports suggested that the predominant c-myc 5'UTRs did not alter the translational efficiency of mRNA in vivo.;Expression of heterologous mRNAs fused to the principal c-myc 5'UTR (derived from the P2 transcript) in various cell lines confirmed that this element did not inhibit translation initiation. however, insertion of tihs sequence between the two cistrons of a dicistronic mRNA demonstrated that the 5' UTR stimulated the expression of the downstream cistron. Synthesis of the second cistron from the 5' UTR-containing dicistronic mRNA was shown to be independent of translation initiation at the upstream cistron start codon. In addition, the enhanced downstream cistron expression was shown to occur on intact dicistronic mRNAs. These data strongly suggest that the c-myc 5'UTR contains an internal ribosome entry segment capable of directing ribosomes to a site downstream of the 5' end of the mRNA.;Deletion analysis was used to define the minimum elment required for c-myc IRES-directed translation. These experiments demonstrated that IRES is located between nucelotides -396 and -57 of the human c-myc P2 5'UTR. Interestingly, the activity of the c-myc IRES may depend on limiting factors. Furthermore, internal initiation directed by the c-myc 5'UTR was very inefficient on dicistronic mRNAs lacking a nuclear origin. Thus, a prior nuclear event may also be necessary for c-myc IRES-driven translation initiation.;Finally, the effect of the c-myc 5' leader sequences was analyzed in rabbit reticulocyte lysate. The 5' UTR was unable to promote internal ribosome entry in this system. In fact, both the P2 and P1 sequences reduced the translational efficiency of mRNAs. Furthermore, the P2 5' UTR displayed a strong dependence on the 5' cap structure.;The 5' UTR may modulate c-myc protein synthesis through both the cap-dependent and internal initiation mechanism of translation

    Translational induction of the c-myc oncogene via activation of the FRAP/TOR signalling pathway.

    No full text
    Previous studies on the regulation of c-myc have focused on the transcriptional control of this proto-oncogene. We have investigated the signalling pathways involved under circumstances in which there is a translational upregulation in the levels of c-myc protein. We have demonstrated an up to tenfold serum-dependent increase of c-myc protein levels in Epstein-Barr virus immortalized B-cell lines 2-4 h after disruption of cellular aggregates, which is not accompanied by an equivalent increase in mRNA. Overall protein synthesis rates only increased threefold suggesting that the c-myc message was being selectively translated. We observed increases in the phosphorylation of p70 and p85 S6 kinases and of initiation factor eIF-4E binding protein 1 (4E-BP1) 1-2 h after stimulation, suggesting activation of the FRAP/TOR signalling pathway. The increased phosphorylation of 4E-BP1 led to a decrease in its association with eIF-4E and an increase in its association with the eIF-4G component of the eIF-4F initiation complex. The signalling inhibitors rapamycin and wortmannin blocked the phosphorylation of 4E-BP1 and abolished the translational component of the c-myc response. Our data suggest that dissociation of eIF-4E from 4E-BP1, leading to an increase in the formation of the eIF-4F initiation complex, relieves the translation repression imposed on the c-myc mRNA by its structured 5'UTR

    SF2/ASF TORCs up translation

    No full text
    No abstract available
    corecore