1,815 research outputs found

    Detecting temporal and spatial effects of epithelial cancers with Raman spectroscopy.

    Get PDF
    PublishedJournal ArticleResearch Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov'tThis is the final version of the article. Available from Hindawi Publishing Corporation via the DOI in this record.Epithelial cancers, including those of the skin and cervix, are the most common type of cancers in humans. Many recent studies have attempted to use Raman spectroscopy to diagnose these cancers. In this paper, Raman spectral markers related to the temporal and spatial effects of cervical and skin cancers are examined through four separate but related studies. Results from a clinical cervix study show that previous disease has a significant effect on the Raman signatures of the cervix, which allow for near 100% classification for discriminating previous disease versus a true normal. A Raman microspectroscopy study showed that Raman can detect changes due to adjacent regions of dysplasia or HPV that cannot be detected histologically, while a clinical skin study showed that Raman spectra may be detecting malignancy associated changes in tissues surrounding nonmelanoma skin cancers. Finally, results of an organotypic raft culture study provided support for both the skin and the in vitro cervix results. These studies add to the growing body of evidence that optical spectroscopy, in this case Raman spectral markers, can be used to detect subtle temporal and spatial effects in tissue near cancerous sites that go otherwise undetected by conventional histology.The authors acknowledge the financial support of the NCI/NIH (R01-CA95405 and R21-CA95995), as well as the Howard Hughes Medical Institute (pre-doctoral fellowship for MK). We would also like to thank the doctors and staff at Vanderbilt University Medical Center and Tri-state Women’s Health for all their assistance

    Single cell label-free probing of chromatin dynamics during B lymphocyte maturation

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this recordData availability: The original contributions presented in the study are publicly available. This data can be found here: https://doi.org/10.6084/m9.figshare.14135219.v1Large-scale intracellular signalling during developmental growth or in response to environmental alterations are largely orchestrated by chromatin within the cell nuclei. Chemical and conformational modifications of the chromatin architecture are critical steps in the regulation of differential gene expression and ultimately cell fate determination. Therefore, establishing chemical properties of the nucleus could provide key markers for phenotypic characterisation of cellular processes on a scale of individual cells. Raman microscopy is a sensitive technique that is capable of probing single cell chemical composition - and sub-cellular regions - in a label-free optical manner. As such, it has great potential in both clinical and basic research. However, perceived limitations of Raman spectroscopy such as low signal intensity and the difficulty in linking alterations in vibrational signals directly with ensuing biological effects have hampered advances in the field. Here we use immune B lymphocyte development as a model to assess chromatin and transcriptional changes using confocal Raman microscopy in combination with microfluidic devices and correlative transcriptomics, thereby linking changes in chemical and structural properties to biological outcomes. Live B lymphocytes were assessed before and after maturation. Multivariate analysis was applied to distinguish cellular components within each cell. The spectral differences between non-activated and activated B lymphocytes were then identified, and their correlation with known intracellular biological changes were assessed in comparison to conventional RNA-seq analysis. Our data shows that spectral analysis provides a powerful tool to study gene activation that can complement conventional molecular biology techniques and opens the way for mapping the dynamics in the biochemical makeup of individual cells.Engineering and Physical Sciences Research Council (EPSRC)Biotechnology and Biological Sciences Research Council (BBSRC)SNFRosetrees Trust FundUZH Research Priority ProgramRGSMedical Research Council (MRC

    ICTV Virus Taxonomy Profile: Rhabdoviridae.

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The family Rhabdoviridae comprises viruses with negative-sense (-) single-stranded RNA genomes of 10.8-16.1 kb. Virions are typically enveloped with bullet-shaped or bacilliform morphology but can also be non-enveloped filaments. Rhabdoviruses infect plants and animals including mammals, birds, reptiles and fish, as well as arthropods which serve as single hosts or act as biological vectors for transmission to animals or plants. Rhabdoviruses include important pathogens of humans, livestock, fish and agricultural crops. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of Rhabdoviridae, which is available at www.ictv.global/report/rhabdoviridae.Production of this summary, the online chapter, and associated resources was funded by a grant from the Wellcome Trust (WT108418AIA)

    Survey of the quality of experimental design, statistical analysis and reporting of research using animals

    Get PDF
    For scientific, ethical and economic reasons, experiments involving animals should be appropriately designed, correctly analysed and transparently reported. This increases the scientific validity of the results, and maximises the knowledge gained from each experiment. A minimum amount of relevant information must be included in scientific publications to ensure that the methods and results of a study can be reviewed, analysed and repeated. Omitting essential information can raise scientific and ethical concerns. We report the findings of a systematic survey of reporting, experimental design and statistical analysis in published biomedical research using laboratory animals. Medline and EMBASE were searched for studies reporting research on live rats, mice and non-human primates carried out in UK and US publicly funded research establishments. Detailed information was collected from 271 publications, about the objective or hypothesis of the study, the number, sex, age and/or weight of animals used, and experimental and statistical methods. Only 59% of the studies stated the hypothesis or objective of the study and the number and characteristics of the animals used. Appropriate and efficient experimental design is a critical component of high-quality science. Most of the papers surveyed did not use randomisation (87%) or blinding (86%), to reduce bias in animal selection and outcome assessment. Only 70% of the publications that used statistical methods described their methods and presented the results with a measure of error or variability. This survey has identified a number of issues that need to be addressed in order to improve experimental design and reporting in publications describing research using animals. Scientific publication is a powerful and important source of information; the authors of scientific publications therefore have a responsibility to describe their methods and results comprehensively, accurately and transparently, and peer reviewers and journal editors share the responsibility to ensure that published studies fulfil these criteria

    Sustained CD28 Expression Delays Multiple Features of Replicative Senescence in Human CD8 T Lymphocytes

    Get PDF
    CD28 costimulatory signal transduction in T lymphocytes is essential for optimal telomerase activity, stabilization of cytokine mRNAs, and glucose metabolism. During aging and chronic infection with HIV-1, there are increased proportions of CD8 T lymphocytes that lack CD28 expression and show additional features of replicative senescence. Moreover, the abundance of these cells correlates with decreased vaccine responsiveness, early mortality in the very old, and accelerated HIV disease progression. Here, we show that sustained expression of CD28, via gene transduction, retards the process of replicative senescence, as evidenced by enhanced telomerase activity, increased overall proliferative potential, and reduced secretion of pro-inflammatory cytokines. Nevertheless, the transduced cultures eventually do reach senescence, which is associated with increased CTLA-4 gene expression and a loss of CD28 cell surface expression. These findings further elucidate the central role of CD28 in the replicative senescence program, and may ultimately lead to novel therapies for diseases associated with replicative senescence

    Convergence and divergence in the evolution of cat skulls: temporal and spatial patterns of morphological diversity

    Get PDF
    Background: Studies of biological shape evolution are greatly enhanced when framed in a phylogenetic perspective. Inclusion of fossils amplifies the scope of macroevolutionary research, offers a deep-time perspective on tempo and mode of radiations, and elucidates life-trait changes. We explore the evolution of skull shape in felids (cats) through morphometric analyses of linear variables, phylogenetic comparative methods, and a new cladistic study of saber-toothed cats. Methodology/Principal Findings: A new phylogenetic analysis supports the monophyly of saber-toothed cats (Machairodontinae) exclusive of Felinae and some basal felids, but does not support the monophyly of various sabertoothed tribes and genera. We quantified skull shape variation in 34 extant and 18 extinct species using size-adjusted linear variables. These distinguish taxonomic group membership with high accuracy. Patterns of morphospace occupation are consistent with previous analyses, for example, in showing a size gradient along the primary axis of shape variation and a separation between large and small-medium cats. By combining the new phylogeny with a molecular tree of extant Felinae, we built a chronophylomorphospace (a phylogeny superimposed onto a two-dimensional morphospace through time). The evolutionary history of cats was characterized by two major episodes of morphological divergence, one marking the separation between saber-toothed and modern cats, the other marking the split between large and small-medium cats. Conclusions/Significance: Ancestors of large cats in the ‘Panthera’ lineage tend to occupy, at a much later stage, morphospace regions previously occupied by saber-toothed cats. The latter radiated out into new morphospace regions peripheral to those of extant large cats. The separation between large and small-medium cats was marked by considerable morphologically divergent trajectories early in feline evolution. A chronophylomorphospace has wider applications in reconstructing temporal transitions across two-dimensional trait spaces, can be used in ecophenotypical and functional diversity studies, and may reveal novel patterns of morphospace occupation

    Chemical combinations elucidate pathway interactions and regulation relevant to Hepatitis C replication

    Get PDF
    SREBP-2, oxidosqualene cyclase (OSC) or lanosterol demethylase were identified as novel sterol pathway-associated targets that, when probed with chemical agents, can inhibit hepatitis C virus (HCV) replication.Using a combination chemical genetics approach, combinations of chemicals targeting sterol pathway enzymes downstream of and including OSC or protein geranylgeranyl transferase I (PGGT) produce robust and selective synergistic inhibition of HCV replication. Inhibition of enzymes upstream of OSC elicit proviral responses that are dominant to the effects of inhibiting all downstream targets.Inhibition of the sterol pathway without inhibition of regulatory feedback mechanisms ultimately results in an increase in HCV replication because of a compensatory upregulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) expression. Increases in HMGCR expression without inhibition of HMGCR enzymatic activity ultimately stimulate HCV replication through increasing the cellular pool of geranylgeranyl pyrophosphate (GGPP).Chemical inhibitors that ultimately prevent SREBP-2 activation, inhibit PGGT or encourage the production of polar sterols have great potential as HCV therapeutics if associated toxicities can be reduced

    Thermal decomposition of allantoin as probed by matrix isolation FTIR spectroscopy

    Get PDF
    The optimized geometries, energies of the possible conformers of allantoin (2,5-dioxo-4-imidazolidinyl urea, the diureide of glyoxylic acid) as well as the barriers for conformational interconversion have been calculated using the density functional theory [DFT(B3LYP)/6-311++G(d,p)] method. The calculations predicted the existence of four conformers (gC, tT, g′C, and g′T; where the first and second symbols in the name of the conformers designate the conformation around the exocyclic NHC–NHCO and CNH–CO axes, respectively), with the gC form contributing to more than 98% of the population in gas phase at room temperature. This conformer is different from that corresponding to the monomeric unit found in crystalline RS-allantoin (g′C; Mootz, D. Acta Crystallogr.1965, 19, 726), stressing the importance of intermolecular H-bonding in determining the structure of the crystal. Upon sublimation under vacuum (10−6 mbar), the compound was found to undergo extensive decomposition to urea, isocyanic acid, NH3, and carbon. The identification of the decomposition products was made by using matrix isolation infrared spectroscopy. In consonance with the theoretical predictions, the allantoin molecules surviving thermal decomposition were found to undergo conformational isomerization and be present in the cryogenic argon matrix in both the gC and g′C conformations. The solid state room temperature infrared spectrum of allantoin was also investigated and assigned

    Current therapy of granulomatosis with polyangiitis and microscopic polyangiitis: the role of rituximab.

    Get PDF
    Granulomatosis with polyangiitis and microscopic polyangiitis are anti-neutrophil cytoplasmic antibody-associated vasculitides (AAVs) that are prone to cycles of remission and relapse. The introduction of cytotoxic therapy has changed the prognosis for these diseases from typically fatal to manageable chronic illnesses with a relapsing course. Despite improvements in outcomes, recurrence of disease and drug-related toxicity continue to produce significant morbidity and mortality. Better understanding of the pathogenesis of AAV and the mechanism of action of cyclophosphamide has led to investigation of therapies that target B cells. Two randomized controlled trials have shown that rituximab is not inferior to cyclophosphamide for induction of remission in severe AAV, with no significant difference in the incidence of overall adverse events in rituximab- versus cyclophosphamide-treated patients. Data from ongoing clinical trials will determine the role of rituximab in the maintenance of remission
    corecore