1,259 research outputs found

    Estimating Probability Distributions from Complex Models with Bifurcations: The Case of Ocean Circulation Collapse

    Get PDF
    Abstract in HTML and technical report in PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/).Studying the uncertainty in computationally expensive models has required the development of specialized methods, including alternative sampling techniques and response surface approaches. However, existing techniques for response surface development break down when the model being studied exhibits discontinuities or bifurcations. One uncertain variable that exhibits this behavior is the thermohaline circulation (THC) as modeled in three-dimensional general circulation models. This is a critical uncertainty for climate change policy studies. We investigate the development of a response surface for studying uncertainty in THC using the Deterministic Equivalent Modeling Method, a stochastic technique using expansions in orthogonal polynomials. We show that this approach is unable to reasonably approximate the model response. We demonstrate an alternative representation that accurately simulates the model’s response, using a basis function with properties similar to the model’s response over the uncertain parameter space. This indicates useful directions for future methodological improvements.This research was supported in part by the Methods and Models for Integrated Assessments Program of the National Science Foundation, Grant ATM-9909139, by the Office of Science (BER), U.S. Department of Energy, Grant Nos. DE-FG02-02ER63468 and DE-FG02-93ER61677, and by the MIT Joint Program on the Science and Policy of Global Change (JPSPGC)

    Relative Roles of Climate Sensitivity and Forcing in Defining the Ocean Circulation Response to Climate Change

    Get PDF
    Abstract in HTML and technical report in PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/).The response of the ocean’s meridional overturning circulation (MOC) to increased greenhouse gas forcing is examined using a coupled model of intermediate complexity, including a dynamic 3D ocean subcomponent. Parameters are the increase in CO2 forcing (with stabilization after a specified time interval) and the model’s climate sensitivity. In this model, the cessation of deep sinking in the north “Atlantic” (hereinafter, a “collapse”), as indicated by changes in the MOC, behaves like a simple bifurcation. The final surface air temperature (SAT) change, which is closely predicted by the product of the radiative forcing and the climate sensitivity, determines whether a collapse occurs. The initial transient response in SAT is largely a function of the forcing increase, with higher sensitivity runs exhibiting delayed behavior; accordingly, high CO2-low sensitivity scenarios can be assessed as a recovering or collapsing circulation shortly after stabilization, whereas low CO2-high sensitivity scenarios require several hundred additional years to make such a determination. We also systemically examine how the rate of forcing, for a given CO2 stabilization, affects the ocean response. In contrast with previous studies based on results using simpler ocean models, we find that except for a narrow range of marginally stable to marginally unstable scenarios, the forcing rate has little impact on whether the run collapses or recovers. In this narrow range, however, forcing increases on a time scale of slow ocean advective processes results in weaker declines in overturning strength and can permit a run to recover that would otherwise collapse.This research was supported in part by the Methods and Models for Integrated Assessments Program of the National Science Foundation, Grant ATM-9909139, by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-93ER61677, and by the MIT Joint Program on the Science and Policy of Global Change (JPSPGC)

    Translating Research Into Practice: Speeding the Adoption of Innovative Health Care Programs

    Get PDF
    Looks at case studies of four innovative clinical programs to determine key factors influencing the diffusion and adoption of innovations in health care

    Dickey-Lincoln School Lakes Project Environmental Impact Statement: Appendix H: Noise Impact Assessment

    Get PDF
    The overall project area can be described as a very quiet natural area remote from any major industrial activity, but subject to high traffic noise levels along the main road. Noise sensitive areas consist of low density residential areas in the villages and widely spaced residences along the main road. The estimated yearly average Ldn for all noise sensitive areas 1s 60 dB due to the close proximity of traffic to all residences. The yearly average Ldn decreases to 40 dB at 600 ft from the main road, and to 30 dB 1n the timberland areas

    Systematics and Palynology of Picrodendron Further Evidence for Relationship with the Oldfieldioideae (Euphorbiaceae)

    Get PDF
    Although known to botanical science for 285 years, the genus Picrodendron Planchon has been poorly understood for most of this time. The most pervasive problem has been that of discerning familial relationships, and there have been additional difficulties in typifying the generic name (Hayden & Reveal, 1980) and in distinguishing its three nominate species. This paper provides a systematic treatment for Picrodendron and demonstrates its relationships with Euphorbiaceae subfam. Oldfieldioideae Kohler & Webster as evidenced by data on gross morphology, palynology, anatomy, and cytology

    Resting-state connectivity studies as a marker of the acute and delayed effects of subanaesthetic ketamine administration in healthy and depressed individuals: a systematic review

    Get PDF
    Acute ketamine administration has been widely used in neuroimaging research to mimic psychosis-like symptoms. Within the last two decades, ketamine has also emerged as a potent, fast-acting antidepressant. The delayed effects of the drug, observed 2-48 h after a single infusion, are associated with marked improvements in depressive symptoms. At the systems' level, several studies have investigated the acute ketamine effects on brain activity and connectivity; however, several questions remain unanswered around the brain changes that accompany the drug's antidepressant effects and how these changes relate to the brain areas that appear with altered function and connectivity in depression. This review aims to address some of these questions by focusing on resting-state brain connectivity. We summarise the studies that have examined connectivity changes in treatment-naïve, depressed individuals and those studies that have looked at the acute and delayed effects of ketamine in healthy and depressed volunteers. We conclude that brain areas that are important for emotional regulation and reward processing appear with altered connectivity in depression whereas the default mode network presents with increased connectivity in depressed individuals compared to healthy controls. This finding, however, is not as prominent as the literature often assumes. Acute ketamine administration causes an increase in brain connectivity in healthy volunteers. The delayed effects of ketamine on brain connectivity vary in direction and appear to be consistent with the drug normalising the changes observed in depression. The limited number of studies however, as well as the different approaches for resting-state connectivity analysis make it very difficult to draw firm conclusions and highlight the importance of data sharing and larger future studies

    Evaluation of Legacy Forest Harvesting Impacts on Dominant Stream Water Sources and Implications for Water Quality Using End Member Mixing Analysis

    Get PDF
    Forests are critical water supply regions that are increasingly threatened by natural and anthropogenic disturbance. Evaluation of runoff-generating processes within harvested and undisturbed headwater catchments provides insight into disturbance impacts on water quality and drinking water treatability. In this study, an extensive hydrologic dataset collected at the experimental Turkey Lakes Watershed (TLW) located on the Canadian Shield was used to quantify sources of stormflow in legacy clear-cut (24-years post harvesting) and forested (control) headwater catchments using an end member mixing analysis (EMMA) model. Stream water, groundwater, soil water, and throughfall water quality were evaluated during spring snowmelt, stormflow, and fall wet-up. Groundwater chemistry was similar to stream water chemistry in both catchments, suggesting that groundwater is a major contributor to stream flow. The water chemistry in small wetlands within the study catchments was comparable to stream water chemistry, suggesting that wetlands are also important contributors to stream flow. Differences in wetland position between the legacy clear-cut and control catchments appeared to have a greater influence on source contributions than legacy harvesting. Results from this study provide insight into runoff-generation processes that reflect event/seasonal flow dynamics and the impacts on water quality

    Assessing Retinal Structure In Complete Congenital Stationary Night Blindness and Oguchi Disease

    Get PDF
    Purpose To examine retinal structure and changes in photoreceptor intensity after dark adaptation in patients with complete congenital stationary night blindness and Oguchi disease. Design Prospective, observational case series. Methods We recruited 3 patients with complete congenital stationary night blindness caused by mutations in GRM6, 2 brothers with Oguchi disease caused by mutations in GRK1, and 1 normal control. Retinal thickness was measured from optical coherence tomography images. Integrity of the rod and cone mosaic was assessed using adaptive optics scanning light ophthalmoscopy. We imaged 5 of the patients after a period of dark adaptation and examined layer reflectivity on optical coherence tomography in a patient with Oguchi disease under light- and dark-adapted conditions. Results Retinal thickness was reduced in the parafoveal region in patients with GRM6 mutations as a result of decreased thickness of the inner retinal layers. All patients had normal photoreceptor density at all locations analyzed. On removal from dark adaptation, the intensity of the rods (but not cones) in the patients with Oguchi disease gradually and significantly increased. In 1 Oguchi disease patient, the outer segment layer contrast on optical coherence tomography was 4-fold higher under dark-adapted versus light-adapted conditions. Conclusions The selective thinning of the inner retinal layers in patients with GRM6 mutations suggests either reduced bipolar or ganglion cell numbers or altered synaptic structure in the inner retina. Our finding that rods, but not cones, change intensity after dark adaptation suggests that fundus changes in Oguchi disease are the result of changes within the rods as opposed to changes at a different retinal locus
    corecore