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Relative Roles of Climate Sensitivity and Forcing in Defining the

Ocean Circulation Response to Climate Change

Jeffery R. Scott, Andrei P. Sokolov, Peter H. Stone, and Mort D. Webster

Abstract

The response of the ocean’s meridional overturning circulation (MOC) to increased greenhouse gas

forcing is examined using a coupled model of intermediate complexity, including a dynamic 3D ocean

subcomponent. Parameters are the increase in CO2 forcing (with stabilization after a specified time

interval) and the model’s climate sensitivity. In this model, the cessation of deep sinking in the north

“Atlantic” (hereinafter, a “collapse”), as indicated by changes in the MOC, behaves like a simple

bifurcation. The final surface air temperature (SAT) change, which is closely predicted by the product

of the radiative forcing and the climate sensitivity, determines whether a collapse occurs. The initial

transient response in SAT is largely a function of the forcing increase, with higher sensitivity runs

exhibiting delayed behavior; accordingly, high CO2-low sensitivity scenarios can be assessed as a

recovering or collapsing circulation shortly after stabilization, whereas low CO2-high sensitivity

scenarios require several hundred additional years to make such a determination. We also

systemically examine how the rate of forcing, for a given CO2 stabilization, affects the ocean

response. In contrast with previous studies based on results using simpler ocean models, we find that

except for a narrow range of marginally stable to marginally unstable scenarios, the forcing rate has

little impact on whether the run collapses or recovers. In this narrow range, however, forcing

increases on a time scale of slow ocean advective processes results in weaker declines in overturning

strength and can permit a run to recover that would otherwise collapse.
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1. INTRODUCTION

The behavior of the climate system in response to changes in greenhouse gases strongly

depends on two critical variables: changes in greenhouse gas levels and the sensitivity of the

climate system to these imposed changes. Both these variables are highly uncertain. The rate of

increase in greenhouse gases is a function of both anthropogenic changes in emissions and the

climate system’s ability to sequester these increases. Projections of future emissions are based on

assumptions of economic and population growth, technological change, and the effectiveness of

potential regulation of emissions. The latter is often implicit in greenhouse gas “stabilization”

scenarios, which explore the longer-term climate response to holding concentrations constant

once they reach a predetermined level. Climate sensitivity of a coupled model is a function of the

physics and parameterizations used in the respective subcomponent models (Meehl et al., 2004),

and also likely depends on coupling procedures used to link these subcomponents (Marotzke and
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Stone, 1995). This results in significant differences in climate sensitivities between existing

climate models (Cubasch et al., 2001; Colman, 2003). Climate change observed in the 20
th

century also can only place limited constraints on this quantity (Andronova and Schlesinger,

2001; Gregory et al., 2002; Forest et al., 2002; Forest et al., 2006). Improvements in climate

models are expected with gains in computational resources, but will also require improvements

in our understanding and representation of physical processes. Even with such expected

improvements, however, significant uncertainty in these parameters will remain.

We examine the response of a coupled climate model given different greenhouse gas forcings

and climate sensitivities. The former is accomplished through different prescribed increases in

CO2 concentration in the atmospheric sub-model, the latter by varying the cloud response to

changes in surface temperature (Sokolov and Stone, 1998). We are particularly interested in the

behavior of the model’s meridional overturning circulation (MOC). The MOC plays a significant

role as a conveyor of heat and tracers throughout the ocean, and in particular contributes a

sizeable northward heat transport in the Atlantic Ocean (Ganachaud and Wunsch, 2000). Typical

coupled model runs show a gradual weakening of the Atlantic MOC, in response to an increase

in radiative forcing (Cubasch et al., 2001; Gregory et al., 2005), although there is a considerable

variation across models in the magnitude of this weakening. A complete model description,

including discussion of our model’s response to enhanced greenhouse gas forcing as compared

with other coupled models, is presented in section 2.

In section 3, we have carried out over 60 climate change simulations, effectively covering a

plausible portion of phase space, by varying these two “parameters” (i.e. CO2 concentration and

climate sensitivity) in the model. Ranges for climate sensitivity and radiative forcing were based

on the results of Forest et al. (2002) and Webster et al. (2002). A novel aspect of this work is that

we are interested in the interaction of these parameters across a full range of conceivable climate

responses to global warming, particularly when the climate state is near a bifurcation. In our

simulations, we examine the climate response as the global ocean circulation weakens and

recovers, or in some cases, collapses, looking at a 1000-year (or longer) time horizon (as

previously noted, a “collapse” being defined as a shutdown of deep convection and net

downwelling in the North Atlantic).

Using an annual mean, energy balance atmospheric model coupled to a zonally-averaged

three-basin ocean model, Stocker and Schmittner (1997, hereinafter SS97; see also Schmittner

and Stocker, 1999) studied the atmospheric CO2 level required for ocean circulation collapse and

how it depends on the rate of CO2 increase and climate sensitivity, similar to this study. A major

result was that the ocean circulation was considerably less stable given a more rapid increase to a

specified level of CO2. Their array of experiments exploring the possibility of collapse across a

range of forcings and climate sensitivities is similar to ours, yet there is a subtle difference. Their

forcing increases occurred for variable lengths of time, until a desired final level of CO2 was

reached (the minimum level necessary to collapse the circulation is contoured on their Figure 4).

In our comparable experiments in section 3 of this paper, CO2 was held constant after 100 years

of increase, with different rates of increase occurring during this period. In other words, we
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examine the ocean stability for a “stabilization scenario” occurring at a specific point in time,

rather than stabilization occurring at a predetermined level of CO2. In section 4, we specifically

examine the impact of the forcing rate, given identical final CO2 levels, in the context of the

results from section 3. Thus, we more generally investigate how the rate of forcing affects the

ocean response; this question was also addressed in Stouffer and Manabe (1999, hereinafter

SM99) using fully coupled three-dimensional (3D) atmosphere-ocean models, although their

runs were of shorter duration, using a single climate sensitivity.

Our use of a 3D ocean model represents a significant step forward as compared to a zonally-

averaged model in examining ocean circulation stability. The MOC is governed by thermal wind

balance; this balance is fundamentally three-dimensional, and other processes that play a role

(such as parameterized eddy dynamics and convective adjustment) can also have important zonal

structure. It has been previously argued that zonally-averaged models are problematic for MOC

study (Marotzke and Scott, 1999). Important features of the ocean circulation found in 3D

models, such as zonal circulations and gyre circulations, are entirely absent. The reader is

referred to Wright et al. (1998) for a more complete discussion of two-dimensional (2D) ocean

circulation models and their inherent assumptions and limitations. On the other hand, several

studies suggest that the stability behavior of 2D models adequately mimics 3D general

circulation model (GCM) studies (e.g., Weijer and Dijkstra, 2001). Our goal is to revisit SS97’s

results taken to the next level of model complexity; our results will strongly suggest that the use

of 2D ocean models for transient global warming experiments is dubious. In addition to 3D

ocean dynamics, other important improvements here include the addition of the seasonal cycle, a

(2D) freshwater forcing field based on actual observations, the addition of dynamics, radiation,

and cloud processes in the atmospheric model, and inclusion of the Arctic Ocean (which is a

critical component of our collapse mechanism).

We conclude with discussion and summary of results in section 5.

2. MODEL DESCRIPTION

The principle subcomponents of the model are as follows:

Atmosphere: The atmospheric model (Sokolov and Stone, 1998) is a zonally-averaged

statistical-dynamical model developed from the GISS GCM Model II (Hansen et al., 1983). The

resolution of the model is 4 degrees in latitude with 11 vertical layers. The model solves the

zonally-averaged primitive equations with parameterizations of the main physical processes,

including eddy transports of heat, moisture, and momentum, clouds, convection, and radiation.

Four different allowable surface-types affect the surface fluxes, specifically ocean, land, sea-ice,

and land-ice, with the terrestrial hydrography provided by a simple two-layer “bucket” model.

The atmosphere's internal time step is 10 minutes.

Ocean:  The ocean model is based on the MIT ocean general circulation model (Marshall et

al., 1997). The bathymetry used here (Figure 1) consists of interconnected rectangular, flat-

bottom ocean basins (our “Indian”, “Pacific”, and “Atlantic” oceans), with topographic sills in

our “Indonesian Passage”, “Drake Passage” and in the “Labrador Sea” and “Greenland Sea”
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Figure 1. Ocean model bathymetry in meters, overlaid by ocean model grid. Note the decreased zonal
grid spacing near the boundaries, which allows for improved resolution of the boundary currents.
Ocean basins are labeled to provide a reference to crudely similar ocean basins on Earth.

regions. The model also includes a flat-bottom “Arctic Ocean”, albeit considerably more shallow

than the other oceans. Resolution with latitude is uniform at 4º, while resolution with longitude is

enhanced near boundary currents, which improves the model's fidelity of ocean heat transport

(Kamenkovich et al., 2000). The ocean model employs the Gent-McWilliams (1990) and Redi

(1982) parameterizations of the effect of mesoscale eddies on isopycnals; diapycnal mixing in the

model is represented using a prescribed uniform vertical diffusivity of 0.3 cm
2
 s

-1
.

Sea-Ice: The model includes a 3-layer thermodynamic sea-ice model, as described in Winton

(2000) and Bitz and Lipscombe (1999).

Coupling/Air-Sea Exchange: The model uses flux adjustments of zonal wind stress, heat,

and freshwater between the oceanic and atmospheric sub-models. In the spin-up phase,

temperature was restored in the surface layer (90-day timescale) using a “mapping” of zonally-

averaged, monthly-mean Levitus and Boyer (1994) climatology for each ocean basin:

maintaining this zonal average, a linear trend across each basin was applied to the target

temperature by comparing the actual temperature in the western sector vs. the zonal average.

Similarly, a linear trend was applied to the zonal mean freshwater forcing field (see Figure 2)

based on the Jiang et al. (1999) data set. In order to improve upon the resulting surface model

salinity as compared with the Levitus and Boyer climatology, the resulting data set was then

modified slightly to freshen the tropical and northern Atlantic and increase salinity in the Pacific

(given the idealized geometry and large uncertainty/error in the observed evaporation field, some

modification of the Jiang et al. field was not only reasonable, but unavoidable). A final

modification was the addition of 0.05 Sv to the freshwater input into the Arctic (co-located with
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Figure 2. Freshwater forcing field (evaporation minus precipitation minus runoff) used to force the
ocean mixed layer in the model’s present-day state. For transient experiments, flux adjustments
are diagnosed from the model spin-up, so that the ocean effectively receives this field plus any
anomalies in freshwater forcing resulting from changing atmospheric CO2 concentration.

anomalous river runoff in our transient experiments, as specified below), which served to further

weaken the overturning and thus bring the circulation closer to the bifurcation point. The final

surface freshwater fluxes were then applied to the ocean/sea-ice surface without any salinity

restoring.

All told, these modifications weakened the maximum overturning in the North Atlantic from

23 Sv to 12 Sv, The original overturning was well above the observed estimates for the present-

day circulation of approximately 15-18 Sv (Ganachaud and Wunsch, 2000; Talley et al., 2003),

whereas the weakened overturning is slightly less than estimated. The MIT-UW model

(Kamenkovich et al., 2002), a predecessor of this model, also used the Jiang et al., freshwater

forcing data, although without such modifications; the hysteresis curve of that model (Figure 3)

showed it to be significantly more stable than all other intermediate complexity models described

in Rahmstorf et al. (2005), whereas the hysteresis curve of the model used here is now very

typical of the rest. Zonal wind stresses were generated by taking zonal averages for each ocean

basin based on the Trenberth et al. (1989) climatology, without applying any linear trend across

the basin. Following the spin-up phase, flux adjustments of heat and freshwater are computed

and used to equilibrate the “fully-coupled” model; the technique of anomaly coupling is

employed for the zonal wind field. The meridional wind stress applied to the ocean surface is

coupled directly from the 2D atmospheric model. Coupling between the atmosphere and

ocean/sea-ice model occurs every four hours, which is the ocean model's time step for advecting

tracers. Further detail on the general coupled model can be found in Dutkiewicz et al. (2005).

Our model’s open passage through our idealized “Canadian Archipelago” plays an important

role in the increased CO2 simulations. It has been observed that the Arctic runoff has increased

roughly 7% over the last sixty years (Peterson et al., 2002) and coupled climate model results
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Figure 3. Hystersis curve comparison between this model and the model used in Kamenkovich et al.
(2002). The starting points of the models’ integration, i.e. the model’s control present-day climate,
are denoted by hollow circles. In the Rahmstorf et al. (2005) model intercomparison (see their
Figure 2), four of the six models with “realistic” 3D ocean models and three out of five with
“simplified” ocean models placed the present-day state near the middle of the hystersis loop, similar
to our model above. The width of our hystersis loop is larger than those within the Rahmstorf et al.
“realistic” group, but more similar to many in the “simplified” ocean group (Rahmstorf et al. choose
to group the Kamenkovich et al. model in the “simplified” group, since their ocean basins were
rectangular, even more simplified than the topography employed here). Also note that the
streamfunction here and in Kamenkovich et al. remain slightly non-zero even with a collapsed
circulation; this small value is from the wind-driven Ekman cell in the Northern Hemisphere.

suggest this trend will continue, if not increase (Wu et al., 2005). Previous ocean model studies

have shown that the MOC is indeed quite sensitive to increasing Arctic discharge (Goosse et al.,

1997; Otterå et al., 2004; Peltier et al., 2006; Rennermalm et al., 2006) although the degree of

this sensitivity appears to be model dependent. Our model employs a flexible river-routing

scheme for anomalous runoff (as calculated in the atmospheric subcomponent). In the southern

hemisphere, for simplicity (and lacking a river network in this idealized topography) this runoff

is distributed evenly over all ocean points. In the northern hemisphere, however, all anomalous

runoff is diverted to the Arctic Ocean at 72-76°N between 96° and 260° in longitude. A

comparison of our model’s anomalous freshwater and surface heat (given a 1% increase in CO2

for 70 years) with several models in the Coupled Model Intercomparison Project (as shown in

Huang et al., 2003 Figure 1) suggests that our model is fairly typical in its atmospheric response.

As such, the diversion of anomalous runoff was necessary in order to achieve a collapse in ocean

circulation across a sizeable portion of our parameter phase space. Given this and other model

idealizations, our model cannot be expected to give realistic information about when a collapse

will occur. Rather, our goal is to study qualitatively how the collapse depends on the parameters,

and our anomalous runoff routing scheme allows us to do so in a realistic parameter range.
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For our climate change scenarios in section 3, the level of atmospheric CO2 is increased at

different compound rates for 100 years and then held constant at the resulting level. Thus, the

final level of CO2 in the atmosphere is dictated by the rate of increase, with the resulting

radiative forcing linearly proportional to the rate. Values of climate sensitivity shown throughout

the paper represent an equilibrium sensitivity of the atmospheric model coupled to a mixed layer

ocean model for a doubling of CO2 concentration. A lookup table was created to equate our

cloud feedback coefficient to specific mixed layer model climate sensitivity. However, defined in

such a way, climate sensitivity does not exactly match the climate sensitivity of the coupled

climate model because of interaction between the atmosphere and the dynamic ocean, with the

disparity as large as 0.5 °C in several of the experiments.

3. STABILIZATION EXPERIMENTS WITH 100-YEAR FORCING PERIOD

Parameter phase space is presented in Figure 4, with symbols representing individual runs.

Changes in global annual mean surface air temperature (SAT) for runs plotted using black

symbols are shown in Figure 5a. A time series of the maximum North Atlantic meridional

overturning streamfunction for these runs is plotted in Figure 5b. Note that this subset includes

several runs with identical sensitivity and several runs with identical CO2 increases.

In the first 100 years, when the largest changes in SAT occur, the initial rate of increase in

SAT is roughly proportional to the rate of CO2 increase. During this period, the effect of

sensitivity on SAT is relatively minor. In years 100-300, however, SAT increases more rapidly

in higher sensitivity runs, with only modest further increase in runs with low sensitivity. This
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Figure 4. Phase space of all model runs forced by increasing CO2 for 100 years (at a constant percent
increase) and held constant at the 100-yr level thereafter. Runs in black are presented in Figure 5;
runs in blue and red are presented in Figure 6. The dashed line is a plot of constant Log(C/315
ppmv)*S, where C is the final CO2 concentration and S is climate sensitivity. A reference point on this
line was the 852 ppmv/1.9 °C run (i.e. through the black star above), and to close approximation this
line demarcates the regions of THC recovery (lower left) and collapse (upper right).
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Figures 5. Results for runs with forcings given by the black symbols in Figure 4, as compared to a
control run. CO2 concentration at year 100 (and thereafter) and climate sensitivity is labeled to
the right of the respective time series: (a) change in global annual mean SAT; (b) maximum
overturning streamfunction in the North Atlantic.

behavior of the high sensitivity runs is qualitatively similar in SM99’s greenhouse gas forcing

experiments, where only a percentage of the equilibrium increase in SAT was achieved at the

point of doubling CO2, particularly when it occurred in less than 100 years (their model’s climate

sensitivity was 4.5°C, which falls in the range of our “high sensitivity” scenarios). Since the time

scale for the atmospheric response to changes in radiative forcing is relatively short, the slower

response in high sensitivity runs is due to delay in the amplification of climate feedbacks

(Hansen et al., 1985; Raper et al., 2002). The subduction of heat below the ocean surface

attenuates the increase in SAT, which effectively delays the full impact of all temperature-

dependent feedbacks. Except for the two time series with greatest increase in SAT, the runs

plotted in Figure 5a seem quite close to equilibration after 500 years.
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As a consequence of the increase in SAT, the increase of Arctic runoff at year 100 ranges

from 0.03 to 0.10 Sv, which as discussed has important consequences for the ocean circulation.

A 0.10 Sv increase is roughly a doubling of the current real-world Arctic runoff; the lower half

of the range is more plausible, however, as it is comparable to the Wu et al. (2005) projections

using the HadCM3 climate model (note that Wu et al.’s time series of Arctic runoff, as shown in

their Figure 4, ends at year 2050, so some extrapolation is necessary to estimate a 100-yr

change). In Figure 5b, it is immediately clear that several of the runs are headed toward a

collapse of the North Atlantic overturning circulation, while others weaken initially and then

recover and/or are in the process of recovering. Unlike SAT, the meridional overturning

circulation is not yet at equilibrium after 1000 years in most simulations. This slow response is

due primarily to the long equilibration timescale of the deep ocean. Somewhat surprisingly,

however, in our runs the global mean ocean temperature (not shown) has achieved a large

percentage of its CO2-related warming by 1000 years. In SM99, a timescale of several thousand

years is necessary for deep ocean equilibration, which suggests ocean heat uptake is more

efficient in our model.

At increased CO2 levels, the strength of the overturning at equilibrium (requiring somewhat

longer integration than plotted here; see Figures 9-12) is only modestly weaker in those runs that

recover, despite significant warming. Stouffer and Manabe (2003) observed similar results using

their coupled model. Wiebe and Weaver (1999), using an energy balance model coupled to an

ocean GCM, found considerably larger overturning with CO2 increases. In contrast, SS97’s

overturning recovery was to a decidedly weaker state than our model, although it should be noted

that their control-state overturning was considerably stronger. Thus, we conclude that the

equilibrium response to an increase in CO2 seems somewhat model dependent, although our

model’s recovery to a somewhat weakened state is at least partially a consequence of our Arctic

river runoff modification.

Note that in Figure 5b the dark blue curve (this run’s parameter choices are shown by the

black star on Figure 4) seems to have stabilized at an intermediate state characterized by weak

overturning. Ultimately this run does collapse after 6000 years (the blue curve in Figure 9c),

behaving as if it were an unstable equilibrium, i.e. a threshold or bifurcation point determining

whether the circulation recovers or collapses (in this manuscript we refer to this phenomenon as

a bifurcation given that our results seems so well captured by simple non-linear system behavior,

although we caution the reader that we have not shown this rigorously). Other runs are further

along toward collapse by year 1000; in fact, for the two runs with strongest forcing, high-latitude

sinking in the North Atlantic has completely ceased. The monotonic increase of SAT toward an

equilibrium value is not affected by a collapse in the ocean circulation, except a very slight yet

noticeable decrease in the highest curves in Figure 5a in the last several hundred years (this is

caused by an increase in sea-ice extent in the North Atlantic in response to a decrease in the heat

transport by the Atlantic branch of the MOC). Thus, despite a profound shift in the large-scale

ocean circulation pattern in those runs that collapse, there is only minimal immediate impact on

(global mean) SAT.
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The decrease in overturning in the first 100 years, like that of SAT, is largely dictated by the

rate of CO2 forcing increase. This is illustrated in Figure 6a. The trend is approximately linear

for all data points, whether the circulation is ultimately on a path to recovery or collapse (as

indicated by the color of data points, showing the overturning strength at year 1000). While the

higher CO2 runs are more favored to collapse by year 1000 (blue points), it is also clear that

climate sensitivity plays a role in determining the final outcome. Note that several runs recover

despite a high CO2 concentration (i.e. there are several orange and yellow recovering runs amidst

the area dominated by blue/collapsing runs), and these too obey the general trend. Conversely,

Figure 6b suggests no systematic relationship between the climate sensitivity and overturning

strength at year 100.

As illustrated in Figure 7, we are able to determine the critical parameter combination that

determines whether a collapse occurs in our model: S*Log(C/Co), the product of climate

sensitivity and the logarithm of the multiplicative change in CO2. All runs which cross a

threshold of approximately 7 Sv ultimately collapse; this occurs for S*Log(C/Co) of

approximately 0.8 or higher.
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streamfunction at year 1000.

Note that this product is proportional to the expected equilibrium increase in SAT; given that

all forcing increases occur over 100 years, this product is also linearly proportional to the product

of the rate of CO2 increase and the climate sensitivity. However, it is worth noting that our

expected equilibrium increase in SAT does not exactly equal the actual increase in SAT, given

that our climate sensitivity was estimated using a mixed layer ocean model (see section 2).

Curiously, if one uses the actual climate sensitivity for the run (as estimated from SAT at year

1000), it is no longer possible to define the bifurcation curve in terms of the simple parameter

combination. Thus, it would seem that S*Log(C/Co) is useful to assess stability only if S is

defined without including the non-linear climate feedback provided by changes in the ocean

circulation.

In order to divide phase space into collapsing and recovering regions in Figure 4, we used the

parameters for the dark blue run shown in Figure 5 (i.e. the run seemingly attracted to an

unstable intermediate state) to calculate the critical value of S*Log(C/Co). Other runs situated

very near this “bifurcation curve” may recover or collapse, although as mentioned it often takes

many additional hundreds or even thousands of years to determine their ultimate fate (given that

our methods are only able to prescribe the model’s desired climate sensitivity to within 0.2 °C,

this curve should be viewed as approximate; we will show other runs seemingly situated

precisely on the curve that just barely recover). Based on SS97 model results, Keller et al. (2004)

constructed a similar plot of phase space (their Figure 1a), also with a curve separating recovery

from collapse. However, they expressed this curve using an empirical fit, in contrast with the

simple product of parameters found here. A comparison of these similar plots suggests that our

model is somewhat less stable than SS97’s model for runs with high climate sensitivities, and

considerably less stable for low sensitivity.

The significance of this product goes beyond merely predicting whether the ocean circulation

will ultimately collapse or recover; it also can be used to predict the strength of the overturning
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circulation at year 1000 (Figure 7). The fact that all runs here fall on a well-defined curve

suggests two important points: 1) during a collapse, where the climate system is undergoing a

fairly dramatic upheaval, the changes in overturning are predictable and well-behaved, despite

the chaotic nature of the system; and 2) the overturning circulation behavior is strongly linked to

the equilibrium change in SAT. The largest scatter in Figure 7 occurs where the product is small;

after recovery most runs seemed to “overshoot” the new equilibrium to some degree, with some

of the runs embarking on long-period oscillations (e.g., see Fig 11a).

To illustrate better the respective roles of climate sensitivity and greenhouse gas forcing in

governing the response of the MOC, in Figure 8 we show the North Atlantic overturning

strength for runs given by blue and red symbols in Figure 4. The red runs are characterized by a

low CO2 forcing increase and high climate sensitivity, using parameter choices that straddle the

bifurcation curve. Conversely, we have chosen the blue runs to have a high level of forcing but

low climate sensitivity. Note that these runs are all fairly close to the bifurcation curve, and the

product of rate and sensitivity is roughly the same for the recovering runs on both extremes of

phase space (the same is true for the collapsing runs). Given the difference in forcing rate

between these simulations, there is a noticeable disparity in the change in overturning during the

first 100 years, with less decrease exhibited in the slow forcing runs. After 100 years, the low

sensitivity forcing pairs almost immediately split apart: the “recovering” runs stop decreasing

and meander over the next 100 years before increasing more monotonically, whereas the

“collapsing” runs continue to weaken unabated. In contrast, all of the high sensitivity runs

meander for an additional 300 years. Thereafter, the collapsing runs begin a steady decrease, and

the recovering runs trend back to original strength.
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Figure 8. Comparison of the North Atlantic maximum overturning streamfunction for the blue and
red runs in Figure 4. The blue time series are high CO2, low sensitivity runs, and the red curves
are low CO2, high sensitivity runs.
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4. DEPENDENCE ON RATE OF CO2 INCREASE

In this section we shift our focus to how the rate of CO2 increase affects results, given

stabilization at a predetermined level of CO2. More specifically, we seek to address the following

questions: How does the rate of forcing affect runs that collapse? How does rate affect runs that

recover? To answer these questions, we use similar parameter choices as runs examined in

section 3, but repeat these simulations with either the full change in CO2 applied at the run

outset, or reduce the rate of increase so that the full forcing is not achieved until year 200, year

400, and/or year 1000. A related critical question to be gleaned here is whether rate affects

whether a run recovers or collapses; the answer will be discussed more fully in section 5, where

it is contrasted with SS97’s conclusion.

In the following sub-sections, we first examine additional simulation(s) with parameter

choices far from the bifurcation curve (i.e. strong forcing runs and weak forcing runs,

respectively) and progress to runs closer to the curve. In other words, we begin with forcing

scenarios that are presumed to capture the behavior typical over much of phase space, and

proceed to special cases either on the threshold of collapse or just barely collapsing. Another

objective of our run selection criteria was to ensure testing both high-sensitivity/low CO2

combinations and vice-versa; unless specifically noted, results were generally similar.

4.1. How does rate affect runs that collapse?

The response in overturning streamfunction for a select run with strong forcing (the black

triangle in Figure 4) is shown in Figure 9a, for immediate, 100-year, and 1000-year increases in

CO2. The overturning in the immediate forcing run weakens more quickly than when increased

over 100 years, as would be expected; after 100 years, this run has decreased to about 7 Sv,

whereas the 100 year forcing run has decreased to 9 Sv. All told, however, there is very little

difference between the two time series, except for the immediate forcing run leading the 100 year

forcing run by approximately 70 years. The overturning collapse in the 1000-year forcing run

takes considerably longer to occur. In the first 500 years, the overturning weakens slowly,

stabilizing briefly between years 350 and 600, before collapsing monotonically thereafter. The

lag between this run and the immediate forcing run is approximately 700 years, which is also the

time required for CO2 to reach its critical level as given by the curve in Figure 4. This qualitative

relationship was observed for several other runs in the “collapse” portion of phase space (not

shown), both for low and high climate sensitivities. With more marginally unstable runs,

however, the lag in collapse was sometimes attenuated further in the 1000-year forcing scenario.

For special cases closer to the bifurcation curve, however, we found several instances where

the CO2 forcing rate does affect the stability behavior. For runs that just barely collapse (given a

forcing increase over 100 years), in a few instances we found that rate could affect whether a

collapse occurs, as shown in Figures 9b-c. Here, in addition to plotting forcing increases over

immediate, 100 years, and 1000 years, we show forcing increases over 200 and 400 years. The

forcing in the experiment shown in Figure 9b places it just slightly away from the bifurcation

curve (the red square in Figure 4), whereas the parameter combination for the Figure 9c was that
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Figures 9. Comparison of North Atlantic maximum overturning streamfunction for select strongly
forced runs, all of which collapse when the forcing increase is applied over a 100-year period. CO2

increases occur instantly (red), over 100 years (blue), 200 years (green), 400 years (magenta), and
1000 years (black): (a) located far from the bifurcation curve, 1398 ppmv/2.31° (black triangle in
Figure 4); (b) close to the bifurcation curve, 509 ppmv/4.5° (red square); (c) falling on the
bifurcation curve, 856 ppmv/1.9° (black star). Note the change in time scale between subplots.

used to define the curve (the black star in Figure 4; the blue time series is the same both here and

in Figure 5). In the former, the 1000-year forcing run does not collapse, whereas in the latter,

neither the 1000-year or 400-year forcing runs collapse.

On closer inspection, there are some additional differences between the respective series

shown in Figures 9b-c. The 1000-year run in Figure 9b never experiences sufficient weakening

to attract it to the unstable intermediate state, whereas all runs in Figure 9c, including the 1000-

year and 400-year runs that ultimately recover, remain in this weakened state for several

thousand years. The runs that do collapse in Figure 9c seem to show slightly greater weakening

prior to reaching this state. Note that the immediate run here actually collapses about a hundred

years after the 100-year forcing run, although the 200-year run has not even fully collapsed by

year 7000; these differences in the time it takes to collapse are inconsistent with our earlier

results, presuming the system maintains some “memory” of the overturning strength upon

reaching the unstable state. As a further test, we repeated the 400-year forcing run with trivially

different initial conditions, and the time series had not yet upturned (as does the 400-year forcing

run shown) by the end of the 7000-year simulation. One final observation is that in Figure 9c the

overturning in the 1000-year forcing run rebounds during years 400-700, despite increasing CO2

levels during this period (the same behavior is also evident in the 200- and 400-year forcing runs,

to lesser degree, earlier in their respective time series); this would seem to indicate the forcing is

sufficiently slow as to allow the recovery mechanism to begin to occur, but ultimately cannot

keep pace with the continued rise in CO2.
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Our conclusions from this set of experiments are as follows. For most of the “collapse”

portion of phase space, the rate of forcing has little affect on the stability behavior; a slower rate

merely delays the response until a critical level of CO2 forcing is surpassed. However, slower

forcing may avoid weakening the overturning to the unstable state, but only if the final forcing is

close to the bifurcation curve in Figure 4. For runs that are very close to the bifurcation curve,

even very slow forcing may not be sufficient to avoid getting “stuck” in the weak unstable state

for several thousand years. We also speculate that the chaotic nature of the system might affect

whether the overturning ultimately collapses or recovers given a final forcing precisely at the

bifurcation curve (in addition to affecting the time to recovery or collapse), although further

(CPU-intensive) testing would be needed to confirm this hypothesis.

4.2. How does rate affect runs that recover?

In Figure 10 we show two sets of experiments with relatively weak final CO2 forcing, given

immediate, 100- and 1000-year forcing periods. In the bottom panel (the run is given by the

black circle in Figure 4) the nadir in overturning is slightly greater in the immediate forcing run

than the 100-year run although the opposite is true in the top panel (the black square in Figure 4).

Except for these minor differences in the initial few hundred years, in both panels the immediate

and 100-year forcing runs are quite similar to each other. Given a rapid increase in forcing, the

time scale to reach the minimum in overturning is order 100 years, even with the immediate

forcing runs. As such, the 100-year forcing run in Figure 10b (low climate sensitivity) exhibits

its minimum at about the same time as the immediate forcing run, although it takes slightly

longer for the 100-year forcing run to reach its minimum in Figure 10a (medium climate

sensitivity). Thus, there appears to be an internal ocean timescale which constrains how fast the
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Figures 10. Comparison of North Atlantic maximum overturning streamfunction for select weakly
forced runs; when forcing increases are applied over a 100-year period, these runs are characterized
by a rapid recovery. CO2 increases occur instantly (red), over 100 years (blue), and over 1000 years
(black): (a) 446 ppmv/2.31° (black square in Figure 4); (b) 617 ppmv/1.35° (black circle).
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system can respond to instant CO2 changes, and unless the climate sensitivity is high (which as

discussed, delays the effective response), there is little practical difference between increasing

the forcing as a step-function or more gradually increasing forcing over a centennial time scale.

When forcing increases occur over a 1000-year period, in both panels of Figure 10 the

maximum weakening in overturning is roughly the same as in simulations with more rapidly

forcing increases. This suggests that for our weakly forced runs, the maximum weakening is not

affected by the rate at which the forcing increase occurs, a result also noted in SM99’s study.

During the 1000-year period of forcing increase, overturning decreases fairly uniformly, with

recovery ensuing once the forcing is held constant. Curiously, in Figure 10b, the time series

remains at a lower overturning, whereas in Figure 10a both series converge by year 2000

(although it appears in Figure 10b the 100- and 1000-year series might ultimately converge if

integrated for additional millennia). The reason for the behavior is unclear; in our longer-term

runs, the parameter choice used in Figure 10b was the only one to exhibit different recovery

equilibria given identical final CO2 forcing levels. Thus, we conclude that even 1000-year

forcing is not sufficiently slow to maintain quasi-equilibrium, given a change in the magnitude of

CO2 on the order of doubling. This observation was also noted by SM99, and based on the

supporting physical argument of slow adjustment timescales in the ocean (particularly, vertical

diffusion), would seem to be model-independent.

In Figure 11 we show similar time series for two runs closer to the bifurcation curve (the red

circle and blue triangle in Figure 4, respectively). Again there is little difference between the

immediate and 100-year forcing runs, although the disparity in the rate of the initial decline is

greater in Figure 11a, owing to the high sensitivity of this run. There are several other interesting

behaviors seen in these runs, specifically the long-term oscillation in Figure 11a and the marked
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Figures 11. Comparison of North Atlantic maximum overturning streamfunction for select weakly
forced runs; as in Fig 10, these runs all recover when forcing increases are applied over 100 years,
although the forcing is somewhat stronger here and the recovery somewhat slower. CO2 increases
occur instantly (red), over 100 years (blue), and over 1000 years (black): (a) 425 ppmv/5.5° (red
circle in Figure 4); (b) 1215 ppmv/1.0° (blue triangle).
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increase in overturning during years 500-700 of the 1000-year forcing run in Figure 11b (similar

to that discussed in Figure 9c). Also worth noting is that the maximum decrease in overturning

for the 1000-year forcing runs is now noticeably less than for more rapidly forced time series.

The effect of slower forcing is even more noticeable for the special case of several parameter

combinations that fell nearly exactly on our bifurcation curve, as shown in Figure 12 (runs given

by the green symbols in Figure 4). Here, only the immediate and 100-year forcing runs decrease

sufficiently to reach the proximity of the unstable intermediate state; the minimal decrease in

overturning for the 1000-year forcing runs is especially apparent in Figure 12b-c. In Figure 12b,

we show the only occurrence where immediate forcing had any significant effect in comparison

with 100-year forcing; this run gets “caught” at the intermediate state for several thousand years.

In Figure 12c, the recovery process is particularly sluggish, despite low climate sensitivity, with

even the 1000-year run continuing to decrease well after the forcing is held constant. The

“recovery” state exhibited by this forcing/sensitivity combination exhibited the weakest

overturning of any experiment, approximately 20% shy of the original strength.
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Figures 12. Comparison of North Atlantic maximum overturning streamfunction for three special
cases of marginally stable runs (i.e. located on the bifurcation curve) given forcing over 100
years. CO2 increases occur instantly (red), over 100 years (blue), and over 1000 years (black):
(a) 446 ppmv/5.48° (green square in Figure 4); (b) 548 ppmv/3.42° (green circle); (c) 1514
ppmv/1.21° (green triangle).
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5. SUMMARY AND DISCUSSION

In this work we have run many simulations of our coupled model of intermediate complexity,

effectively mapping phase space for two uncertain parameters, the level of forcing increase and

climate sensitivity.

We find that changes in SAT equilibrate within a few centuries, at a level proportional to the

product of the radiative forcing and the climate sensitivity. This product also determines whether

the ocean circulation collapses across our phase space, hence the obvious conclusion is that

MOC weakening is a direct response to SAT increases. However, it is not simply changes in the

air-sea heat flux that cause the changes in overturning; using a more evenly distributed river

runoff scheme (i.e. rather than dumping anomalous runoff where it is most effective in

weakening the MOC), the model’s ocean circulation did not collapse for a sampling of runs

across phase space. Hence, the collapse is a result of climate feedbacks, particularly increases in

freshwater forcing, as the SAT increases. These results stress the need for continued observations

of Arctic river discharge. Although this model is highly idealized, it demonstrates that the

circulation could be quite susceptible to collapse, given a relatively minor change in freshwater

forcing, as long as this change impacts a location of dynamical significance.

We find that for marginally stable parameter combinations of final CO2 and climate

sensitivity (i.e. those runs which are situated near our bifurcation curve), the rate of forcing can

affect whether a collapse occurs. Lucarini et al. (2005) explain the behavior noted here; they

used a single hemisphere, 2D ocean model, and thus were able to analyze the behavior more

rigorously. Specifically, they found a separation between fast and slow regimes of forcing. An

internal ocean advective timescales of several hundred years determines this separation. For

sufficiently slow forcing, the system is able to begin to equilibrate through advective adjustment,

permitting some runs to recover that would collapse given a more rapid forcing. Given the

importance of these slow internal ocean timescales, there is less practical difference when

forcing occurs over periods much shorter than this advective time scale.

However, for the majority of our runs across phase space, we find that the rate of forcing

increase has little effect on the stability of the circulation; only several runs situated near the

bifurcation curve proved to be exceptions. This result is in striking contrast with SS97’s results,

where the implication was that rate is very important across all of phase space, as implied by

their Figure 4. For example, for a climate sensitivity of 3.7°C, their Figure 4 suggests that the

critical CO2 concentration ranges from approximately 950 ppmv (forcing increases occurring

over a 625 year period) to 630 ppmv (forcing increases over 40 years). Similarly, for a lower

climate sensitivity of 2.6°C, the range is 1600 ppmv (880 years) to 900 ppmv (60 years). A

closer examination of SS97’s Figure 4 shows that the isopleths of critical CO2 have finite slopes

all through phase space (in this figure, no rate dependence would result in vertical isopleths).

These slopes tend to flatten further for low rates of increase, which not coincidentally is where

the time of forcing increase approaches the ocean advective timescale. As discussed in section 1,

2D models lack many important features of the ocean circulation, and thus we would suggest that

these missing elements, operating on faster timescales than large-scale advection, play an
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important role in transient forcing experiments. It would seem that by including these faster

processes, our model is rather insensitive to a forcing increase occurring over different periods

under 100 years, which are typical timescales that could conceivable be of interest for

greenhouse gas policy discussions.

Climate feedbacks operate more slowly for high sensitivity runs than low sensitivity runs.

Therefore, further increases in SAT during the centuries after CO2 stabilization were more

significant in high sensitivity runs. Since the response in MOC is ultimately governed by these

increases, the processes of weakening and collapse or recovery also operate more slowly in high

sensitivity runs. There was minimal change in global mean SAT as the circulation collapsed,

despite a complete reorganization of the oceans’ large-scale circulation pattern. We find that the

collapse in our model operates on a slow timescale and is well behaved, such that it was possible

to closely predict the MOC’s weakening at year 1000 given an experiment’s parameter

combination. In this model, deep sinking initiates in the North Pacific. This Atlantic-Pacific

“seesaw” behavior has been observed in at least one other model (Saenko et al., 2004), although

not specifically in the context of global warming experiments.

It is worth noting that the behavior of the global ocean circulation in this coupled model is

like a simple bifurcation, lending credibility to box model studies of the interhemispheric ocean

circulation, such as those described in Rahmstorf (1996), Scott et al. (1999), Gregory et al.

(2003), and Lucarini and Stone (2005). Of particular relevance to policy-makers is that for some

parameter combinations the ocean circulation seems predestined to collapse in several centuries,

albeit with only modest immediate change in the MOC; moreover, in some cases it took several

centuries (or more) to distinguish between similar runs that eventually collapsed and those that

recovered.
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