30 research outputs found

    The Ser82 RAGE variant affects lung function and serum RAGE in smokers and sRAGE production in vitro

    Get PDF
    Introduction: Genome-Wide Association Studies have identified associations between lung function measures and Chronic Obstructive Pulmonary Disease (COPD) and chromosome region 6p21 containing the gene for the Advanced Glycation End Product Receptor (AGER, encoding RAGE). We aimed to (i) characterise RAGE expression in the lung, (ii) identify AGER transcripts, (iii) ascertain if SNP rs2070600 (Gly82Ser C/T) is associated with lung function and serum sRAGE levels and (iv) identify whether the Gly82Ser variant is functionally important in altering sRAGE levels in an airway epithelial cell model. Methods: Immunohistochemistry was used to identify RAGE protein expression in 26 human tissues and qPCR was used to quantify AGER mRNA in lung cells. Gene expression array data was used to identify AGER expression during lung development in 38 fetal lung samples. RNA-Seq was used to identify AGER transcripts in lung cells. sRAGE levels were assessed in cells and patient serum by ELISA. BEAS2B-R1 cells were transfected to overexpress RAGE protein with either the Gly82 or Ser82 variant and sRAGE levels identified. Results: Immunohistochemical assessment of 6 adult lung samples identified high RAGE expression in the alveoli of healthy adults and individuals with COPD. AGER/RAGE expression increased across developmental stages in human fetal lung at both the mRNA (38 samples) and protein levels (20 samples). Extensive AGER splicing was identified. The rs2070600T (Ser82) allele is associated with higher FEV1, FEV1/FVC and lower serum sRAGE levels in UK smokers. Using an airway epithelium model overexpressing the Gly82 or Ser82 variants we found that HMGB1 activation of the RAGE-Ser82 receptor results in lower sRAGE production. Conclusions: This study provides new information regarding the expression profile and potential role of RAGE in the human lung and shows a functional role of the Gly82Ser variant. These findings advance our understanding of the potential mechanisms underlying COPD particularly for carriers of this AGER polymorphism

    Synaptic proximity enables NMDAR signalling to promote brain metastasis.

    Get PDF
    Metastasis-the disseminated growth of tumours in distant organs-underlies cancer mortality. Breast-to-brain metastasis (B2BM) is a common and disruptive form of cancer and is prevalent in the aggressive basal-like subtype, but is also found at varying frequencies in all cancer subtypes. Previous studies revealed parameters of breast cancer metastasis to the brain, but its preference for this site remains an enigma. Here we show that B2BM cells co-opt a neuronal signalling pathway that was recently implicated in invasive tumour growth, involving activation by glutamate ligands of N-methyl-D-aspartate receptors (NMDARs), which is key in model systems for metastatic colonization of the brain and is associated with poor prognosis. Whereas NMDAR activation is autocrine in some primary tumour types, human and mouse B2BM cells express receptors but secrete insufficient glutamate to induce signalling, which is instead achieved by the formation of pseudo-tripartite synapses between cancer cells and glutamatergic neurons, presenting a rationale for brain metastasis.This work was principally supported by grants from the Swiss National Science Foundation and the European Research Council, and by a gift from the Biltema Foundation that was administered by the ISREC Foundation, Lausanne, Switzerland

    NEXT-CRAB-0: A High Pressure Gaseous Xenon Time Projection Chamber with a Direct VUV Camera Based Readout

    Full text link
    The search for neutrinoless double beta decay (0ÎœÎČÎČ0\nu\beta\beta) remains one of the most compelling experimental avenues for the discovery in the neutrino sector. Electroluminescent gas-phase time projection chambers are well suited to 0ÎœÎČÎČ0\nu\beta\beta searches due to their intrinsically precise energy resolution and topological event identification capabilities. Scalability to ton- and multi-ton masses requires readout of large-area electroluminescent regions with fine spatial resolution, low radiogenic backgrounds, and a scalable data acquisition system. This paper presents a detector prototype that records event topology in an electroluminescent xenon gas TPC via VUV image-intensified cameras. This enables an extendable readout of large tracking planes with commercial devices that reside almost entirely outside of the active medium.Following further development in intermediate scale demonstrators, this technique may represent a novel and enlargeable method for topological event imaging in 0ÎœÎČÎČ0\nu\beta\beta.Comment: 32 Pages, 22 figure

    A Compact Dication Source for Ba2+^{2+} Tagging and Heavy Metal Ion Sensor Development

    Full text link
    We present a tunable metal ion beam that delivers controllable ion currents in the picoamp range for testing of dry-phase ion sensors. Ion beams are formed by sequential atomic evaporation and single or multiple electron impact ionization, followed by acceleration into a sensing region. Controllability of the ionic charge state is achieved through tuning of electrode potentials that influence the retention time in the ionization region. Barium, lead, and cobalt samples have been used to test the system, with ion currents identified and quantified using a quadrupole mass analyzer. Realization of a clean Ba2+\mathrm{Ba^{2+}} ion beam within a bench-top system represents an important technical advance toward the development and characterization of barium tagging systems for neutrinoless double beta decay searches in xenon gas. This system also provides a testbed for investigation of novel ion sensing methodologies for environmental assay applications, with dication beams of Pb2+^{2+} and Cd2+^{2+} also demonstrated for this purpose

    Myocardial preservation by therapy with coenzyme Q10 during heart surgery

    No full text

    In vitro model of adhesion and invasion by Bacillus piliformis.

    No full text
    An in vitro model of Bacillus piliformis infection was developed to investigate the mechanisms of adhesion and internalization of this obligate intracellular bacterium. Adhesion and internalization events were examined by electron microscopic evaluation of infected Caco-2 cell monolayers. A few bacteria were identified in apical surface invaginations and in vacuoles subjacent to the apical surface, whereas the majority of bacteria were observed free within the cytoplasm, suggesting that B. piliformis entered epithelial cells via a phagocytic process and rapidly escaped the phagosome. To confirm that host cell phagocytosis was involved in entry of B. piliformis into mammalian cells, Intestine 407 cells were treated with the phagocytic inhibitor cytochalasin D, infected with B. piliformis, and evaluated for bacterial internalization by double-fluorescence labeling. The results showed decreased intracellular bacteria, suggesting that internalization was dependent on host cell microfilament function. To examine the role of B. piliformis in internalization, growth of live and Formalin-killed bacteria was compared. Dead bacteria were not internalized, suggesting that B. piliformis actively participates in internalization. B. piliformis appears to enter host cells by a bacterially directed phagocytic process. The in vitro system described should prove invaluable in further investigations of B. piliformis pathogenic mechanisms

    Neuron-glia interactions studied with in vitro co-cultures

    No full text
    The complexity of neuronal cell structures and functions requires specific methods of culture to determine how alteration in or among cells gives rise to brain dysfunction and disease. In this context, the primary culture of neuronal cells plays an important role in the study of this topic, especially related to neuronal cells survival and differentiation, nutritional requirements, but also neuronal development and spine formation. For all these investigations and applications, it is very important that primary neurons are cultured under conditions that resemble the in vivo environment as closely as possible. In this line, glia-neuron sandwich co-cultures are an extremely useful tool in vitro to evaluate cell-to-cell interaction relaying on the release of soluble factors and could be a suitable method in the study of the contribution of glia-secreted molecules to neuronal development and spine formation. To this end, this chapter describes the procedures to set up a sandwich co-culture system from primary rat glial cells and hippocampal neurons, and highlights advantages and disadvantages of this approach and its possible application in the investigation of individual glial factor impact on neuronal properties

    Astrocytes Assemble Thalamocortical Synapses by Bridging NRX1α and NL1 via Hevin

    No full text
    Proper establishment of synapses is critical for constructing functional circuits. Interactions between presynaptic neurexins and postsynaptic neuroligins coordinate the formation of synaptic adhesions. An isoform code determines the direct interactions of neurexins and neuroligins across the synapse. However, whether extracellular linker proteins can expand such a code is unknown. Using a combination of in vitro and in vivo approaches, we found that hevin, an astrocyte-secreted synaptogenic protein, assembles glutamatergic synapses by bridging neurexin-1alpha and neuroligin-1B, two isoforms that do not interact with each other. Bridging of neurexin-1alpha and neuroligin-1B via hevin is critical for the formation and plasticity of thalamocortical connections in the developing visual cortex. These results show that astrocytes promote the formation of synapses by modulating neurexin/neuroligin adhesions through hevin secretion. Our findings also provide an important mechanistic insight into how mutations in these genes may lead to circuit dysfunction in diseases such as autism
    corecore