700 research outputs found

    Sonic hedgehog guides post-crossing commissural axons both directly and indirectly by regulating Wnt activity

    Get PDF
    After midline crossing, axons of dorsolateral commissural neurons turn rostrally into the longitudinal axis of the spinal cord. In mouse, the graded distribution of Wnt4 attracts post-crossing axons rostrally. In contrast, in the chicken embryo, the graded distribution of Sonic hedgehog (Shh) guides post-crossing axons by a repulsive mechanism mediated by hedgehog-interacting protein. Based on these observations, we tested for a possible cooperation between the two types of morphogens. Indeed, we found that Wnts also act as axon guidance cues in the chicken spinal cord. However, in contrast to the mouse, Wnt transcription did not differ along the anteroposterior axis of the spinal cord. Rather, Wnt function was regulated by a gradient of the Wnt antagonist Sfrp1 (Secreted frizzled-related protein 1) that in turn was shaped by the Shh gradient. Thus, Shh affects post-crossing axon guidance both directly and indirectly by regulating Wnt function

    The axonally secreted protein axonin-1 is a potent substratum for neurite growth

    Get PDF
    Axonin-1 is a neuronal glycoprotein occurring both as a membrane-bound and a secreted form. Membrane-bound axonin-1 is predominantly located in membranes of developing nerve fiber tracts and has recently been characterized as a cell adhesion molecule; the soluble form is secreted from axons and accumulates in the cerebrospinal fluid and the vitreous fluid of the eye. In the present study, we addressed the question as to whether secreted axonin-1 was released in a functionally competent form and we found that it strongly promotes neurite outgrowth when presented to neurons as an immobilized substratum. Neurite lengths elaborated by embryonic dorsal root ganglia neurons on axonin-1 were similar to those on the established neurite-promoting substrata L1 and laminin. Fab fragments of axonin-1 antibodies completely inhibited neurite growth on axonin-1, but not on other substrata. In soluble form, axonin-1 had an anti-adhesive effect, as revealed by perturbation of neurite fasciculation. In view of their structural similarity, we conclude that secreted and membrane-bound axonin-1 interact with the same growth-promoting neuritic receptor. The fact that secreted axonin-1 is functionally active, together with our previous findings that it is secreted from an internal cellular pool, suggests a functional dualism between membrane-bound and secreted axonin-1 at the site of secretion, which is most likely the growth cone. The secretion of adhesion molecules could represent a powerful and rapidly acting regulatory element of growth cone-neurite interactions in the control of neurite elongation, pathway selection, and possibly target recognition

    Semaphorin6A acts as a gate keeper between the central and the peripheral nervous system

    Full text link
    BACKGROUND: During spinal cord development, expression of chicken SEMAPHORIN6A (SEMA6A) is almost exclusively found in the boundary caps at the ventral motor axon exit point and at the dorsal root entry site. The boundary cap cells are derived from a population of late migrating neural crest cells. They form a transient structure at the transition zone between the peripheral nervous system (PNS) and the central nervous system (CNS). Ablation of the boundary cap resulted in emigration of motoneurons from the ventral spinal cord along the ventral roots. Based on its very restricted expression in boundary cap cells, we tested for a role of Sema6A as a gate keeper between the CNS and the PNS. RESULTS: Downregulation of Sema6A in boundary cap cells by in ovo RNA interference resulted in motoneurons streaming out of the spinal cord along the ventral roots, and in the failure of dorsal roots to form and segregate properly. PlexinAs interact with class 6 semaphorins and are expressed by both motoneurons and sensory neurons. Knockdown of PlexinA1 reproduced the phenotype seen after loss of Sema6A function both at the ventral motor exit point and at the dorsal root entry site of the lumbosacral spinal cord. Loss of either PlexinA4 or Sema6D function had an effect only at the dorsal root entry site but not at the ventral motor axon exit point. CONCLUSION: Sema6A acts as a gate keeper between the PNS and the CNS both ventrally and dorsally. It is required for the clustering of boundary cap cells at the PNS/CNS interface and, thus, prevents motoneurons from streaming out of the ventral spinal cord. At the dorsal root entry site it organizes the segregation of dorsal roots

    Imaging Mass Spectrometry: Hype or Hope?

    Get PDF
    Imaging mass spectrometry is currently receiving a significant amount of attention in the mass spectrometric community. It offers the potential of direct examination of biomolecular patterns from cells and tissue. This makes it a seemingly ideal tool for biomedical diagnostics and molecular histology. It is able to generate beautiful molecular images from a large variety of surfaces, ranging from cancer tissue sections to polished cross sections from old-master paintings. What are the parameters that define and control the implications, challenges, opportunities, and (im)possibilities associated with the application of imaging MS to biomedical tissue studies. Is this just another technological hype or does it really offer the hope to gain new insights in molecular processes in living tissue? In this critical insight this question is addressed through the discussion of a number of aspects of MS imaging technology and sample preparation that strongly determine the outcome of imaging MS experiments

    The SM and NLO multileg working group: Summary report

    Get PDF
    This report summarizes the activities of the SM and NLO Multileg Working Group of the Workshop "Physics at TeV Colliders", Les Houches, France 8-26 June, 2009.Comment: 169 pages, Report of the SM and NLO Multileg Working Group for the Workshop "Physics at TeV Colliders", Les Houches, France 8-26 June, 200

    Different Localization Patterns of Anthocyanin Species in the Pericarp of Black Rice Revealed by Imaging Mass Spectrometry

    Get PDF
    Black rice (Oryza sativa L. Japonica) contains high levels of anthocyanins in the pericarp and is considered an effective health-promoting food. Several studies have identified the molecular species of anthocyanins in black rice, but information about the localization of each anthocyanin species is limited because methodologies for investigating the localization such as determining specific antibodies to anthocyanin, have not yet been developed Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) is a suitable tool for investigating the localization of metabolites. In this study, we identified 7 species of anthocyanin monoglycosides and 2 species of anthocyanin diglycosides in crude extracts from black rice by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis. We also analyzed black rice sections by MALDI-IMS and found 2 additional species of anthocyanin pentosides and revealed different localization patterns of anthocyanin species composed of different sugar moieties. Anthocyanin species composed of a pentose moiety (cyanidin-3-O-pentoside and petunidin-3-O-pentoside) were localized in the entire pericarp, whereas anthocyanin species composed of a hexose moiety (cyanidin-3-O-hexoside and peonidin-3-O-hexoside) were focally localized in the dorsal pericarp. These results indicate that anthocyanin species composed of different sugar moieties exhibit different localization patterns in the pericarp of black rice. This is the first detailed investigation into the localization of molecular species of anthocyanins by MALDI-IMS

    Impact of Climate Change on Voltinism and Prospective Diapause Induction of a Global Pest Insect – Cydia pomonella (L.)

    Get PDF
    Global warming will lead to earlier beginnings and prolongation of growing seasons in temperate regions and will have pronounced effects on phenology and life-history adaptation in many species. These changes were not easy to simulate for actual phenologies because of the rudimentary temporal (season) and spatial (regional) resolution of climate model projections. We investigate the effect of climate change on the regional incidence of a pest insect with nearly worldwide distribution and very high potential for adaptation to season length and temperature – the Codling Moth, Cydia pomonella. Seasonal and regional climate change signals were downscaled to the hourly temporal scale of a pest phenology model and the spatial scale of pest habitats using a stochastic weather generator operating at daily scale in combination with a re-sampling approach for simulation of hourly weather data. Under future conditions of increased temperatures (2045–2074), the present risk of below 20% for a pronounced second generation (peak larval emergence) in Switzerland will increase to 70–100%. The risk of an additional third generation will increase from presently 0–2% to 100%. We identified a significant two-week shift to earlier dates in phenological stages, such as overwintering adult flight. The relative extent (magnitude) of first generation pupae and all later stages will significantly increase. The presence of first generation pupae and later stages will be prolonged. A significant decrease in the length of overlap of first and second generation larval emergence was identified. Such shifts in phenology may induce changes in life-history traits regulating the life cycle. An accordingly life-history adaptation in photoperiodic diapause induction to shorter day-length is expected and would thereby even more increase the risk of an additional generation. With respect to Codling Moth management, the shifts in phenology and voltinism projected here will require adaptations of plant protection strategies to maintain their sustainability

    Spectroscopic, calorimetric, and catalytic evidences of hydrophobicity on Ti-MCM-41 silylated materials for olefin epoxidations

    Get PDF
    tHydrophobic Ti-MCM-41 samples prepared by post-synthesis silylation treatment demonstrate to behighly active and selective catalysts in olefins epoxidation by using organic hydroperoxides as oxidizingagents in liquid phase reaction systems. Epoxide yields show important enhancements with increasedsilylation degrees of the Ti-mesoporous samples. Catalytic studies are combined and correlated withspectroscopic techniques (e.g. XRD, XANES, UV-Visible,29Si MAS-NMR) and calorimetric measurementsto better understand the changes in the surface chemistry of Ti-MCM-41 samples due to the post-synthesis silylation treatment and to ascertain the role of these trimethylsilyl groups incorporated inolefin epoxidation. In such manner, the effect of the organic moieties on solids, and both water and gly-col molecules contents on the catalytic activity and selectivity are analyzed in detail. Results show thatthe hydrophobicity level of the samples is responsible for the decrease in water adsorption and, conse-quently, the negligible formation of the non-desired glycol during the catalytic process. Thus, catalystdeactivation by glycol poisoning of Ti active sites is greatly diminished, this increasing catalyst stabilityand leading to practically quantitative production of the corresponding epoxide. The extended use ofthese hydrophobic Ti-MCM-41 catalysts together with organic hydroperoxides for the highly efficientand selective epoxidation of natural terpenes is also exemplified.The authors gratefully acknowledge financial support of Spanish Government (MAT2012-38567-C02-01, Consolider-Ingenio 2010-Multicat CSD-2009-00050 and Severo Ochoa SEV-2012-0267) and Generalitat Valenciana (Project Prometeo). M.E.D. also thanks funds from Spanish Government (CTQ-2011-27550) and CSIC (PIE 2009801063). J.S.A. and F.R.R. acknowledge financial support from MINECO (Projects MAT2013-45008-p and CONCERT Project-NASEMS (PCIN-2013-057), and from Generalitat Valenciana (PROMETEO2009/002).Silvestre Albero, J.; Domine ., ME.; Jorda Moret, JL.; Navarro Villalba, MT.; Rey Garcia, F.; Rodriguez-Reinoso, F.; Corma Canós, A. (2015). Spectroscopic, calorimetric, and catalytic evidences of hydrophobicity on Ti-MCM-41 silylated materials for olefin epoxidations. Applied Catalysis A: General. 507:14-25. https://doi.org/10.1016/j.apcata.2015.09.029S142550
    corecore