122 research outputs found

    Semiaromatic polyamides with enhanced charge carrier mobility

    Get PDF
    The control of local order in polymer semiconductors using non-covalent interactions may be used to engineer materials with interesting combinations of mechanical and optoelectronic properties. To investigate the possibility of preparing n-type polymer semiconductors in which hydrogen bonding plays an important role in structural order and stability, we have used solution-phase polycondensation to incorporate dicyanoperylene bisimide repeat units into an aliphatic polyamide chain backbone. The morphology and thermomechanical characteristics of the resulting polyamides, in which the aliphatic spacer length was varied systematically, were comparable with those of existing semiaromatic engineering polyamides. At the same time, the charge carrier mobility as determined by pulse-radiolysis time-resolved microwave conductivity measurements was found to be about 10-2 cm2 V-1 s-1, which is similar to that reported for low molecular weight perylene bisimides. Our results hence demonstrate that it is possible to use hydrogen bonding interactions as a means to introduce promising optoelectronic properties into high-performance engineering polymers.Peer ReviewedPostprint (author's final draft

    Characterization and modelling the mechanical behaviour of poly (l-lactic acid) for the manufacture of bioresorbable vascular scaffolds by stretch blow moulding

    Get PDF
    Bioresorbable Vascular Scaffolds (BVS) manufactured from poly (l-lactic acid) (PLLA) offer an alternative to metal scaffolds for the treatment of coronary heart disease. One of the key steps in the manufacture of these scaffolds is the stretch blow moulding process where the PLLA is biaxially stretched above glass transition temperature (Tg), inducing biaxial orientation and thus increasing ductility, strength and stiffness. To optimise the manufacture and performance of these scaffolds it is important to understand the influence of temperature and strain rate on the constitutive behaviour of PLLA in the blow moulding process. Experiments have been performed on samples of PLLA on a custom built biaxial stretch testing machine to replicate conditions typically experienced during blow moulding i.e. in a temperature range from 70 °C to 100 °C and at strain rates of 1 s−1, 4 s−1 and 16 s−1 respectively. The data is subsequently used to calibrate a nonlinear viscoelastic material model to represent the deformation behaviour of PLLA in the blow moulding process. The results highlight the significance of temperature and strain rate on the yielding and strain hardening behaviour of PLLA and the ability of the selected model to capture it

    Experimental characterisation on the behaviour of PLLA for stretch blowing moulding of bioresorbable vascular scaffolds

    Get PDF
    Processing tubes from poly (l-lactic acid) (PLLA) by stretch blow moulding (SBM) is used in the manufacture of bioresorbable vascular scaffolds (BVS) to improve their mechanical performance. To better understand this processing technique, a novel experimental setup by free stretch blow inside a water bath was developed to visualise the tube forming process and analyse the deformation behaviour. PLLA tubes were heated, stretched and blown with no mould present inside a temperature-controlled water bath whilst recording the processing parameters (axial force, inflation pressure). The onset of pressure activation relative to the axial stretch was controlled deliberately to produce a simultaneous (SIM) or sequential (SEQ) mode of deformation. Real-time images of the tube during forming were captured using high speed cameras and the surface strain of the patterned tube was extracted using digital image correlation (DIC). The deformation characteristics of PLLA tubes in SBM was quantified by analysis of shape evolution, strain history and stress-strain relationship

    Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: Polylactide/polyamide11

    No full text
    International audienceBlends of entirely biosourced polymers, namely polylactide (PLA) and polyamide11 (PA11), have been melt-compounded by twin-screw extrusion without the use of any compatibilizing agent. The crystallization and melting behavior, the morphology and mechanical properties of the melt-compounded binary blends have been investigated over the whole composition range. Albeit immiscibility prevails in all blends, the micronic and sub-micronic dispersion of the minor phase reveals a self-compatibilization behavior of the PLA/PA11 system as directly evidenced via scanning electron microscopy. For PIA compositions below 50%, PLA appears to be dispersed as globules in the PA11 matrix. With increasing PLA content beyond 50%, the blends exhibit co-continuous intertwined phases, then thread-like PA11 phase dispersed in a PLA matrix. For PIA composition greater than 80%, PA11 displays globular dispersion. In the case of PLA-rich blends, the crystallization of PA11 from the melt displayed a contribution of ``homogeneous nucleation'' corroborating the high degree of dispersion of the minor phase. However, the earlier crystallization of PA11 upon cooling did not promote that of PLA suggesting low interfacial free energy at the boundaries of the phase-separated domains, i.e. roughly neutral interactions between the unlike species. The non-symmetric structural behavior of the blends over the whole composition range was found to influence the mechanical properties. If the elastic modulus of the blends roughly obeys an additive mixture law at room temperature (RT), this is not the case above the Tg of both PLA and PA11. More particularly in the PLA-rich range, the thread-like dispersion of the stiff PA11 component plays the role of in situ fibrillar reinforcement of the soft PIA matrix. The strain at break and the yield stress also do not obey a simple mixture law, both at RT and above Tg. Perspectives of morphological and mechanical improvements of PLA/PA11 blends are discussed. (C) 2011 Elsevier Ltd. All rights reserved

    In-situ SAXS study of the plastic deformation behavior of polylactide upon cold-drawing

    No full text
    cited By 20International audienceThe cold drawing behavior of PLA has been investigated with special attention given to the identification of the elementary plastic deformation mechanisms involved. A combination of SAXS and AFM studies proved to be the most adapted and complementary approaches for this purpose, providing relevant information at a pertinent mesoscopic scale. Regarding the mechanical response, the present work shows that a brittle to ductile transition occurs when the draw temperature is increased and/or when the stretching speed is decreased. Morphological studies reveal that the brittle behavior of PLA is correlated with the occurrence of crazing, whereas in the case of a ductile, several plastic deformation mechanisms are involved and interact in a rather unusual way. In particular, the formation of "shear band crazes" was identified and a tentative explanation of its origin is proposed. In addition this study shows shear banding, activated at high temperature, plays a dual role. While shear bands promote the formation of crazes, they also stabilize them during their growth. Finally some correlations between chain dynamics and the observed mechanical behavior of PLA are also discussed. © 2014 Elsevier Ltd. All rights reserved
    corecore