246 research outputs found
Relation between high-sensitivity C-reactive protein and cardiovascular and renal markers in a middle-income country in the African region.
BACKGROUND: High-sensitivity C-reactive protein (hs-CRP) is associated with several cardiovascular risk factors (CVRF) and with renal function markers. However, these associations have not been examined in populations in the African region. We analyzed the distribution of hs-CRP and the relationship with a broad set of CVRF, renal markers and carotid intima-media thickness (IMT), in the Seychelles (African region). METHODS: We conducted a survey in the population aged 25-64years (n=1255, participation rate: 80.2%). Analyses were restricted to persons of predominantly African descent (n=1011). RESULTS: Mean and median hs-CRP serum concentrations (mg/l) were 3.1 (SD 7.6) and 1.4 (IQR 0.7-2.9) in men and 4.5 (SD 6.7) and 2.2 (IQR 1.0-5.4) in women (p<0.001 for difference between men and women). hs-CRP was significantly associated with several conventional CVRF, and particularly strongly with markers of adiposity. With regards to renal markers, hs-CRP was strongly associated with cystatin C and with microalbuminuria but not with creatinine. hs-CRP was not associated with IMT. CONCLUSIONS: Serum concentration of hs-CRP was significantly associated with sex, several CVRF and selected renal function markers, which extends similar findings in Europe and in North America to a population in the African region. These findings can contribute to guide recommendations for the use of hs-CRP in clinical practice in the region
Folate catabolites in spot urine as non-invasive biomarkers of folate status during habitual intake and folic acid supplementation.
Folate status, as reflected by red blood cell (RCF) and plasma folates (PF), is related to health and disease risk. Folate degradation products para-aminobenzoylglutamate (pABG) and para-acetamidobenzoylglutamate (apABG) in 24 hour urine have recently been shown to correlate with blood folate.
Since blood sampling and collection of 24 hour urine are cumbersome, we investigated whether the determination of urinary folate catabolites in fasted spot urine is a suitable non-invasive biomarker for folate status in subjects before and during folic acid supplementation.
Immediate effects of oral folic acid bolus intake on urinary folate catabolites were assessed in a short-term pre-study. In the main study we included 53 healthy men. Of these, 29 were selected for a 12 week folic acid supplementation (400 µg). Blood, 24 hour and spot urine were collected at baseline and after 6 and 12 weeks and PF, RCF, urinary apABG and pABG were determined.
Intake of a 400 µg folic acid bolus resulted in immediate increase of urinary catabolites. In the main study pABG and apABG concentrations in spot urine correlated well with their excretion in 24 hour urine. In healthy men consuming habitual diet, pABG showed closer correlation with PF (rs = 0.676) and RCF (rs = 0.649) than apABG (rs = 0.264, ns and 0.543). Supplementation led to significantly increased folate in plasma and red cells as well as elevated urinary folate catabolites, while only pABG correlated significantly with PF (rs = 0.574) after 12 weeks.
Quantification of folate catabolites in fasted spot urine seems suitable as a non-invasive alternative to blood or 24 hour urine analysis for evaluation of folate status in populations consuming habitual diet. In non-steady-state conditions (folic acid supplementation) correlations between folate marker (RCF, PF, urinary catabolites) decrease due to differing kinetics
Use of electromyography to detect muscle exhaustion in finishing barrows fed ractopamine HCl
Citation: Noel, J. A., Broxterman, R. M., McCoy, G. M., Craig, J. C., Phelps, K. J., Burnett, D. D., . . . Gonzalez, J. M. (2016). Use of electromyography to detect muscle exhaustion in finishing barrows fed ractopamine HCl. Journal of Animal Science, 94(6), 2344-2356. doi:10.2527/jas2016-0398The objectives of this study were to determine the effects of dietary ractopamine HCl (RAC) on muscle fiber characteristics and electromyography (EMG) measures of finishing barrow exhaustion when barrows were subjected to increased levels of activity. Barrows (n = 34; 92 +/- 2 kg initial BW) were assigned to 1 of 2 treatments: a conventional swine finishing diet containing 0 mg/kg ractopamine HCl (CON) or a diet formulated to meet the requirements of finishing barrows fed 10 mg/kg RAC (RAC+). After 32 d on feed, barrows were individually moved around a track at 0.79 m/s until subjectively exhausted. Wireless EMG sensors were affixed to the deltoideus (DT), triceps brachii lateral head (TLH), tensor fasciae latae (TFL), and semitendinosus (ST) muscles to measure median power frequency (MdPF) and root mean square (RMS) as indicators of action potential conduction velocity and muscle fiber recruitment, respectively. After harvest, samples of each muscle were collected for fiber type, succinate dehydrogenase (SDH), and capillary density analysis. Speed was not different (P = 0.82) between treatments, but RAC+ barrows reached subjective exhaustion earlier and covered less distance than CON barrows (P 0.29). There was a treatment x muscle interaction (P = 0.04) for end-point RMS values. The RAC diet did not change end-point RMS values in the DT or TLH (P > 0.37); however, the diet tended to decrease and increase end-point RMS in the ST and TFL, respectively (P 0.10). Muscles of RAC+ barrows tended to have less type I fibers and more capillaries per fiber (P < 0.07). Type I and IIA fibers of RAC+ barrows were larger (P < 0.07). Compared with all other muscles, the ST had more (P < 0.01) type IIB fibers and larger type I, IIA, and IIX fibers (P < 0.01). Type I, IIA, and IIX fibers of the ST also contained less SDH compared with the other muscles (P < 0.01). Barrows fed a RAC diet had increased time to subjective exhaustion due to loss of active muscle fibers in the ST, possibly due to fibers being larger and less oxidative in metabolism. Size increases in type I and IIA fibers with no change in oxidative capacity could also contribute to early exhaustion of RAC+ barrows. Overall, EMG technology can measure real-time muscle fiber loss to help explain subjective exhaustion in barrows
Exact Hybrid Particle/Population Simulation of Rule-Based Models of Biochemical Systems
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility. © 2014 Hogg et al
Construction and Analysis of an Integrated Regulatory Network Derived from High-Throughput Sequencing Data
We present a network framework for analyzing multi-level regulation in higher eukaryotes based on systematic integration of various high-throughput datasets. The network, namely the integrated regulatory network, consists of three major types of regulation: TF→gene, TF→miRNA and miRNA→gene. We identified the target genes and target miRNAs for a set of TFs based on the ChIP-Seq binding profiles, the predicted targets of miRNAs using annotated 3′UTR sequences and conservation information. Making use of the system-wide RNA-Seq profiles, we classified transcription factors into positive and negative regulators and assigned a sign for each regulatory interaction. Other types of edges such as protein-protein interactions and potential intra-regulations between miRNAs based on the embedding of miRNAs in their host genes were further incorporated. We examined the topological structures of the network, including its hierarchical organization and motif enrichment. We found that transcription factors downstream of the hierarchy distinguish themselves by expressing more uniformly at various tissues, have more interacting partners, and are more likely to be essential. We found an over-representation of notable network motifs, including a FFL in which a miRNA cost-effectively shuts down a transcription factor and its target. We used data of C. elegans from the modENCODE project as a primary model to illustrate our framework, but further verified the results using other two data sets. As more and more genome-wide ChIP-Seq and RNA-Seq data becomes available in the near future, our methods of data integration have various potential applications
The alpha-kinase family: an exceptional branch on the protein kinase tree
The alpha-kinase family represents a class of atypical protein kinases that display little sequence similarity to conventional protein kinases. Early studies on myosin heavy chain kinases in Dictyostelium discoideum revealed their unusual propensity to phosphorylate serine and threonine residues in the context of an alpha-helix. Although recent studies show that some members of this family can also phosphorylate residues in non-helical regions, the name alpha-kinase has remained. During evolution, the alpha-kinase domains combined with many different functional subdomains such as von Willebrand factor-like motifs (vWKa) and even cation channels (TRPM6 and TRPM7). As a result, these kinases are implicated in a large variety of cellular processes such as protein translation, Mg2+ homeostasis, intracellular transport, cell migration, adhesion, and proliferation. Here, we review the current state of knowledge on different members of this kinase family and discuss the potential use of alpha-kinases as drug targets in diseases such as cancer
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Movers or Stayers? Understanding the Drivers of IDP Camp Decongestion During Post-Conflict Recovery in Uganda
The paper explores factors that influence the household decision to leave internal displacement camps in the immediate aftermath of violent conflict. Our analysis is based on two sources of information: household survey data collected in northern Uganda for households that were displaced by the civil conflict, and geo-referenced data on armed conflict events, with which we construct our developed index of recent conflict exposure. We compare households that moved out of camps with those that remained in the camps after the region was declared safe from rebel incursions. The study covers the first few months of the end of conflict, when return was regarded as largely voluntary. We find that a history of conflict both at the place of residence, and at the expected place of return reduces the likelihood of return. Access to camp services overall encourages households to stay in camps, although the effect varies with the proportion of young household members. Results also show that a history of economic skills poses varying effects on return decisions. While experience in cultivation is associated with a high likelihood of moving out of the camp, households with members with recent experience in trading are less inclined to return. From a policy perspective, the results point to the need for recovery initiatives to ensure access to adequate infrastructures in return locations in order to fast-track reintegration
- …