33 research outputs found

    A Main Sequence for Quasars

    Get PDF
    AD and MM-A acknowledge financial support from the Spanish Ministry for Economy and Competitiveness through grants AYA2013-42227-P and AYA2016-76682-C3-1-P. DD and CN acknowledge support from grants PAPIIT108716, UNAM, and CONACyT221398. EB and NB acknowledge grants 176003 Gravitation and the large scale structure of the Universe and 176001 Astrophysical spectroscopy of extragalactic objects supported by the Ministry of Education and Science of the Republic of Serbia

    Quasar massive ionized outflows traced by CIV λ1549 and [OIII]λλ4959,5007

    Get PDF
    The most luminous quasars (with bolometric luminosities are ≳ 1047 erg/s) show a high prevalence of CIV λ1549 and [OIII]λλ4959,5007 emission line profiles with strong blueshifts. Blueshifts are interpreted as due to Doppler effect and selective obscuration, and indicate outflows occurring over a wide range of spatial scales. We found evidence in favor of the nuclear origin of the outflows diagnosed by [OIII]λλ4959,5007. The ionized gas mass, kinetic power, and mechanical thrust are extremely high, and suggest widespread feedback effects on the host galaxies of very luminous quasars, at cosmic epochs between 2 and 6 Gyr from the Big Bang. In this mini-review we summarize results obtained by our group and reported in several major papers in the last few years with an eye on challenging aspects of quantifying feedback effects in large samples of quasars

    Spitzer Space Telescope Measurements of Dust Reverberation Lags in the Seyfert 1 Galaxy NGC 6418

    Get PDF
    We present results from a fifteen-month campaign of high-cadence (~ 3 days) mid-infrared Spitzer and optical (B and V ) monitoring of the Seyfert 1 galaxy NGC 6418, with the objective of determining the characteristic size of the dusty torus in this active galactic nucleus (AGN). We find that the 3.6 μ\mum and 4.5 μ\mum flux variations lag behind those of the optical continuum by 37.22.2+2.437.2^{+2.4}_{-2.2} days and 47.13.1+3.147.1^{+3.1}_{-3.1} days, respectively. We report a cross-correlation time lag between the 4.5 μ\mum and 3.6 μ\mum flux of 13.90.1+0.513.9^{+0.5}_{-0.1} days. The lags indicate that the dust emitting at 3.6 μ\mum and 4.5 μ\mum is located at a distance of approximately 1 light-month (~ 0.03 pc) from the source of the AGN UV-optical continuum. The reverberation radii are consistent with the inferred lower limit to the sublimation radius for pure graphite grains at 1800 K, but smaller by a factor of ~ 2 than the corresponding lower limit for silicate grains; this is similar to what has been found for near-infrared (K-band) lags in other AGN. The 3.6 and 4.5 μ\mum reverberation radii fall above the K-band τL0.5\tau \propto L^{0.5} size-luminosity relationship by factors 2.7\lesssim 2.7 and 3.4\lesssim 3.4, respectively, while the 4.5 μ\mum reverberation radius is only 27% larger than the 3.6 μ\mum radius. This is broadly consistent with clumpy torus models, in which individual optically thick clouds emit strongly over a broad wavelength range.Comment: 13 pages, 9 figure

    The quasar main sequence and its potential for cosmology

    Get PDF
    Nuclear Activity in Galaxies Across Cosmic Time, Proceedings of the conference held 7-11 October 2019 in Addis Ababa, Ethiopia. Edited by Mirjana Pović et al. Proceedings of the International Astronomical Union, Volume 356, pp. 66-71The main sequence offers a method for the systematization of quasar spectral properties. Extreme FeII emitters (or extreme Population A, xA) are believed to be sources accreting matter at very high rates. They are easily identifiable along the quasar main sequence, in large spectroscopic surveys over a broad redshift range. The very high accretion rate makes it possible that massive black holes hosted in xA quasars radiate at a stable, extreme luminosity-to-mass ratio. After reviewing the basic interpretation of the main sequence, we report on the possibility of identifying virial broadening estimators from low-ionization line widths, and provide evidence of the conceptual validity of redshift-independent luminosities based on virial broadening for a known luminosity-to-mass ratio.AdO acknowledges financial support from Spanish grants AYA2016-76682-C3-1-P and SEV-2017-0709

    A Main Sequence For Quasars

    Get PDF
    The 4D eigenvector 1 parameter space defined by Sulentic et al. may be seen as a surrogate H-R diagram for quasars. As in the stellar H-R diagram, a source sequence can be easily identified. In the case of quasars, the main sequence appears to be mainly driven by Eddington ratio. A transition Eddington ratio may in part explain the striking observational differences between quasars at opposite ends of the main sequence. The eigenvector-1 approach opens the door towards properly contextualized models of quasar physics, geometry and kinematics. We review some of the progress that has been made over the past 15 years, and point out still unsolved issues

    Highly accreting quasars: a tool for cosmology?

    Get PDF
    Highly accreting quasars are possible cosmological probes, as their Eddington ratio is expected to saturate toward values of order unity. We present preliminary estimates of redshift- independent source luminosities and the Hubble diagram for quasars in the redshift range 0.1 <~ z <~ 2.6

    VizieR Online Data Catalog: Spectra of 28 intermediate redshift quasars (Sulentic+, 2017)

    Get PDF
    Spectroscopic data for 28 intermediate redshift quasars are identified in Table 1. Actual data files are in FITS format in the spectra sub-directory. Units are in wavelength in Angstroms, and specific flux in erg/s/cm2/Angstrom (pW/m3)x1E15 in the rest frame (i.e., after redshift correction). The last column of Table 1 reports the FITS file names. (2 data files)

    \u3cem\u3eSpitzer Space Telescope\u3c/em\u3e Measurements of Dust Reverberation Lags in the Seyfert 1 Galaxy NGC 6418

    Get PDF
    We present results from a 15 month campaign of high-cadence (~3 days) mid-infrared Spitzer and optical (B and V) monitoring of the Seyfert 1 galaxy NGC 6418, with the objective of determining the characteristic size of the dusty torus in this active galactic nucleus (AGN). . . . For the remainder of the abstract, please visit: http://dx.doi.org/10.1088/0004-637X/801/2/12

    Monitoring Of Active Galactic Nuclei: The Why And The How

    No full text
    this report. Similar programmes, albeit with a sometimes different overall emphasis, have been undertaken by other informal organizations during the same time frame. For example, the European consortium LAG (&quot;Lovers of Active Galaxies&quot;) which was initiated by the late M.V. Penston, has carried out a spectroscopic and photometric monitoring of several AGN on the Canary Islands telescopes within the framework of the CCI 5% international time programme (Robinson 1994)
    corecore