297 research outputs found

    Experimental determination of the complete spin structure for anti-proton + proton -> anti-\Lambda + \Lambda at anti-proton beam momentum of 1.637 GeV/c

    Get PDF
    The reaction anti-proton + proton -> anti-\Lambda + \Lambda -> anti-proton + \pi^+ + proton + \pi^- has been measured with high statistics at anti-proton beam momentum of 1.637 GeV/c. The use of a transversely-polarized frozen-spin target combined with the self-analyzing property of \Lambda/anti-\Lambda decay allows access to unprecedented information on the spin structure of the interaction. The most general spin-scattering matrix can be written in terms of eleven real parameters for each bin of scattering angle, each of these parameters is determined with reasonable precision. From these results all conceivable spin-correlations are determined with inherent self-consistency. Good agreement is found with the few previously existing measurements of spin observables in anti-proton + proton -> anti-\Lambda + \Lambda near this energy. Existing theoretical models do not give good predictions for those spin-observables that had not been previously measured.Comment: To be published in Phys. Rev. C. Tables of results (i.e. Ref. 24) are available at http://www-meg.phys.cmu.edu/~bquinn/ps185_pub/results.tab 24 pages, 16 figure

    On the Production of π+π+\pi^+\pi^+ Pairs in pp Collisions at 0.8 GeV

    Get PDF
    Data accumulated recently for the exclusive measurement of the ppppπ+πpp\to pp\pi^+\pi^- reaction at a beam energy of 0.793 GeV using the COSY-TOF spectrometer have been analyzed with respect to possible events from the ppnnπ+π+pp \to nn\pi^+\pi^+ reaction channel. The latter is expected to be the only ππ\pi\pi production channel, which contains no major contributions from resonance excitation close to threshold and hence should be a good testing ground for chiral dynamics in the ππ\pi\pi production process. No single event has been found, which meets all conditions for being a candidate for the ppnnπ+π+pp \to nn \pi^+\pi^+ reaction. This gives an upper limit for the cross section of 0.16 μ\mub (90% C.L.), which is more than an order of magnitude smaller than the cross sections of the other two-pion production channels at the same incident energy

    Measurement of Spin Transfer Observables in Antiproton-Proton -> Antilambda-Lambda at 1.637 GeV/c

    Full text link
    Spin transfer observables for the strangeness-production reaction Antiproton-Proton -> Antilambda-Lambda have been measured by the PS185 collaboration using a transversely-polarized frozen-spin target with an antiproton beam momentum of 1.637 GeV/c at the Low Energy Antiproton Ring at CERN. This measurement investigates observables for which current models of the reaction near threshold make significantly differing predictions. Those models are in good agreement with existing measurements performed with unpolarized particles in the initial state. Theoretical attention has focused on the fact that these models produce conflicting predictions for the spin-transfer observables D_{nn} and K_{nn}, which are measurable only with polarized target or beam. Results presented here for D_{nn} and K_{nn} are found to be in disagreement with predictions from existing models. These results also underscore the importance of singlet-state production at backward angles, while current models predict complete or near-complete triplet-state dominance.Comment: 5 pages, 3 figure

    Study of the reaction pbar p -> phi phi from 1.1 to 2.0 GeV/c

    Get PDF
    A study has been performed of the reaction pbar p -> 4K using in-flight antiprotons from 1.1 to 2.0 GeV/c incident momentum interacting with a hydrogen jet target. The reaction is dominated by the production of a pair of phi mesons. The pbar p -> phi phi cross section rises sharply above threshold and then falls continuously as a function of increasing antiproton momentum. The overall magnitude of the cross section exceeds expectations from a simple application of the OZI rule by two orders of magnitude. In a fine scan around the xi/f_J(2230) resonance, no structure is observed. A limit is set for the double branching ratio B(xi -> pbar p) * B(xi -> phi phi) < 6e-5 for a spin 2 resonance of M = 2.235 GeV and Width = 15 MeV.Comment: 13 pages, 13 figures, 2 tables, Latex. To be published in Phys. Rev.

    Distribution of antioxidant components in roots of different red beets (Beta vulgaris L.) cultivars

    Get PDF
    The beetroot is typically on the table in winter in form of pickles or juice, but for its nutritional values it would deserve more common consumption. Its curative effect in great part is due to the several vitamins, minerals, and compounds with antioxidant activity. But the division of biological active compounds is very different in the parts of the root. Based on our results, we could compare the differences between the morphology and some inner contents (soluble solid content, colour, betacyanin, betaxanthin, and polyphenol contents, antioxidant activity, and some flavonoids) of two beetroot cultivars. The results of the morphological investigations showed that the ‘Cylindre’ cultivar had more favourable crop parameters than the ‘Alto F1’ cultivar. In the ‘Cylindre’ cultivar the polyphenol content and the antioxidant capacity were significantly higher than in the ‘Alto F1’ cultivar. By determination of the betanin contents of the investigated beetroots, our results showed both betacyanin and betaxanthin contents were higher in the ‘Cylindre’ cultivar. The chlorogenic acid, gallic acid, the cumaric acid have been identified based on the peaks of HPLC in the studied beetroot cultivars

    Transverse-target-spin asymmetry in exclusive ω\omega-meson electroproduction

    Get PDF
    Hard exclusive electroproduction of ω\omega mesons is studied with the HERMES spectrometer at the DESY laboratory by scattering 27.6 GeV positron and electron beams off a transversely polarized hydrogen target. The amplitudes of five azimuthal modulations of the single-spin asymmetry of the cross section with respect to the transverse proton polarization are measured. They are determined in the entire kinematic region as well as for two bins in photon virtuality and momentum transfer to the nucleon. Also, a separation of asymmetry amplitudes into longitudinal and transverse components is done. These results are compared to a phenomenological model that includes the pion pole contribution. Within this model, the data favor a positive πω\pi\omega transition form factor.Comment: DESY Report 15-14

    Double hadron leptoproduction in the nuclear medium

    Full text link
    First measurement of double-hadron production in deep-inelastic scattering has been measured with the HERMES spectrometer at HERA using a 27.6 GeV positron beam with deuterium, nitrogen, krypton and xenon targets. The influence of the nuclear medium on the ratio of double-hadron to single-hadron yields has been investigated. Nuclear effects are clearly observed but with substantially smaller magnitude and reduced AA-dependence compared to previously measured single-hadron multiplicity ratios. The data are in fair agreement with models based on partonic or pre-hadronic energy loss, while they seem to rule out a pure absorptive treatment of the final state interactions. Thus, the double-hadron ratio provides an additional tool for studying modifications of hadronization in nuclear matter

    Subleading-twist effects in single-spin asymmetries in semi-inclusive deep-inelastic scattering on a longitudinally polarized hydrogen target

    Get PDF
    Single-spin asymmetries in the semi-inclusive production of charged pions in deep-inelastic scattering from transversely and longitudinally polarized proton targets are combined to evaluate the subleading-twist contribution to the longitudinal case. This contribution is significantly positive for (\pi^+) mesons and dominates the asymmetries on a longitudinally polarized target previously measured by \hermes. The subleading-twist contribution for (\pi^-) mesons is found to be small

    Single-spin asymmetries in semi-inclusive deep-inelastic scattering on a transversely polarized hydrogen target

    Full text link
    Single-spin asymmetries for semi-inclusive electroproduction of charged pions in deep-inelastic scattering of positrons are measured for the first time with transverse target polarization. The asymmetry depends on the azimuthal angles of both the pion (ϕ\phi) and the target spin axis (ϕS\phi_S) about the virtual photon direction and relative to the lepton scattering plane. The extracted Fourier component \cmpi is a signal of the previously unmeasured quark transversity distribution, in conjunction with the so-called Collins fragmentation function, also unknown. The Fourier component \smpi of the asymmetry arises from a correlation between the transverse polarization of the target nucleon and the intrinsic transverse momentum of quarks, as represented by the previously unmeasured Sivers distribution function. Evidence for both signals is observed, but the Sivers asymmetry may be affected by exclusive vector meson productio

    Spin asymmetry A_1^d and the spin-dependent structure function g_1^d of the deuteron at low values of x and Q^2

    Get PDF
    We present a precise measurement of the deuteron longitudinal spin asymmetry A_1^d and of the deuteron spin-dependent structure function g_1^d at Q^2 < 1 GeV^2 and 4*10^-5 < x < 2.5*10^-2 based on the data collected by the COMPASS experiment at CERN during the years 2002 and 2003. The statistical precision is tenfold better than that of the previous measurement in this region. The measured A_1^d and g_1^d are found to be consistent with zero in the whole range of x.Comment: 17 pages, 10 figure
    corecore