42 research outputs found

    The subcellular localization of the hepatitis C virus non-structural protein NS2 is regulated by an ion channel-independent function of the p7 protein

    Get PDF
    The hepatitis C virus (HCV) p7 ion channel and non-structural protein 2 (NS2) are both required for efficient assembly and release of nascent virions, yet precisely how these proteins are able to influence this process is unclear. Here, we provide both biochemical and cell biological evidence for a functional interaction between p7 and NS2. We demonstrate that in the context of a genotype 1b subgenomic replicon the localization of NS2 is affected by the presence of an upstream p7 with its cognate signal peptide derived from the C terminus of E2 (SPp7). Immunofluorescence analysis revealed that the presence of SPp7 resulted in the targeting of NS2 to sites closely associated with viral replication complexes. In addition, biochemical analysis demonstrated that, in the presence of SPp7, a significant proportion of NS2 was found in a detergent (Triton X-100)-insoluble fraction, which also contained a marker of detergent resistant rafts. In contrast, in replicons lacking p7, NS2 was entirely detergent soluble and the altered localization was lost. Furthermore, we found that serine 168 within NS2 was required for its localization adjacent to replication complexes, but not for its accumulation in the detergent-insoluble fraction. NS2 physically interacted with NS5A and this interaction was dependent on both p7 and serine 168 within NS2. Mutational and pharmacological analyses demonstrated that these effects were not a consequence of p7 ion channel function, suggesting that p7 possesses an alternative function that may influence the coordination of virus genome replication and particle assembly

    Intracellular Proton Conductance of the Hepatitis C Virus p7 Protein and Its Contribution to Infectious Virus Production

    Get PDF
    The hepatitis C virus (HCV) p7 protein is critical for virus production and an attractive antiviral target. p7 is an ion channel when reconstituted in artificial lipid bilayers, but channel function has not been demonstrated in vivo and it is unknown whether p7 channel activity plays a critical role in virus production. To evaluate the contribution of p7 to organelle pH regulation and virus production, we incorporated a fluorescent pH sensor within native, intracellular vesicles in the presence or absence of p7 expression. p7 increased proton (H+) conductance in vesicles and was able to rapidly equilibrate H+ gradients. This conductance was blocked by the viroporin inhibitors amantadine, rimantadine and hexamethylene amiloride. Fluorescence microscopy using pH indicators in live cells showed that both HCV infection and expression of p7 from replicon RNAs reduced the number of highly acidic (pH<5) vesicles and increased lysosomal pH from 4.5 to 6.0. These effects were not present in uninfected cells, sub-genomic replicon cells not expressing p7, or cells electroporated with viral RNA containing a channel-inactive p7 point mutation. The acidification inhibitor, bafilomycin A1, partially restored virus production to cells electroporated with viral RNA containing the channel inactive mutation, yet did not in cells containing p7-deleted RNA. Expression of influenza M2 protein also complemented the p7 mutant, confirming a requirement for H+ channel activity in virus production. Accordingly, exposure to acid pH rendered intracellular HCV particles non-infectious, whereas the infectivity of extracellular virions was acid stable and unaffected by incubation at low pH, further demonstrating a key requirement for p7-induced loss of acidification. We conclude that p7 functions as a H+ permeation pathway, acting to prevent acidification in otherwise acidic intracellular compartments. This loss of acidification is required for productive HCV infection, possibly through protecting nascent virus particles during an as yet uncharacterized maturation process

    Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E. coli.

    Get PDF
    Zinc oxide (ZnO) nanoparticles (NPs) exhibit antibacterial activity against both Gram-positive and Gram-negative bacteria. However, the antimicrobial mechanism of ZnO NPs remains unclear. In this study, we investigated the interactions among ZnO NPs, released chemicals (Zn(2+) and Reactive Oxygen Species, ROS) and Escherichia coli (E. coli) cells. ZnO NPs without contacting with bacterial cells showed strong antibacterial effect. The results of the leakage of intracellular K(+) and integrity of carboxyfluoresce in-filled liposomes showed that ZnO NPs have antimicrobial activity against E. coli by non-specifically disrupting E. coli membranes. Traces of zinc ions (1.25mg/L) and hydrogen peroxide (from 1.25 to 4.5μM/L) were detected in ZnO NPs suspensions, but was insufficient to cause the antibacterial effect. However, the addition of radical scavengers suppressed the bactericidal effect of ZnO coated films against E. coli, potentially implicating ROS generation, especially hydroxyl radicals, in the antibacterial ability of ZnO NPs

    Rotavirus Disrupts Calcium Homeostasis by NSP4 Viroporin Activity

    Get PDF
    Many viruses alter intracellular calcium homeostasis. The rotavirus nonstructural protein 4 (NSP4), an endoplasmic reticulum (ER) transmembrane glycoprotein, increases intracellular levels of cytoplasmic Ca2+ ([Ca2+]cyto) through a phospholipase C-independent pathway, which is required for virus replication and morphogenesis. However, the NSP4 domain and mechanism that increases [Ca2+]cyto are unknown. We identified an NSP4 domain (amino acids [aa] 47 to 90) that inserts into membranes and has structural characteristics of viroporins, a class of small hydrophobic viral proteins that disrupt membrane integrity and ion homeostasis to facilitate virus entry, assembly, or release. Mutational analysis showed that NSP4 viroporin activity was mediated by an amphipathic α-helical domain downstream of a conserved lysine cluster. The lysine cluster directed integral membrane insertion of the viroporin domain and was critical for viroporin activity. In epithelial cells, expression of wild-type NSP4 increased the levels of free cytoplasmic Ca2+ by 3.7-fold, but NSP4 viroporin mutants maintained low levels of [Ca2+]cyto, were retained in the ER, and failed to form cytoplasmic vesicular structures, called puncta, which surround viral replication and assembly sites in rotavirus-infected cells. When [Ca2+]cyto was increased pharmacologically with thapsigargin, viroporin mutants formed puncta, showing that elevation of calcium levels and puncta formation are distinct functions of NSP4 and indicating that NSP4 directly or indirectly responds to elevated cytoplasmic calcium levels. NSP4 viroporin activity establishes the mechanism for NSP4-mediated elevation of [Ca2+]cyto, a critical event that regulates rotavirus replication and virion assembly

    NMR studies of p7 protein from hepatitis C virus

    Get PDF
    The p7 protein of hepatitis C virus (HCV) plays an important role in the viral lifecycle. Like other members of the viroporin family of small membrane proteins, the amino acid sequence of p7 is largely conserved over the entire range of genotypes, and it forms ion channels that can be blocked by a number of established channel-blocking compounds. Its characteristics as a membrane protein make it difficult to study by most structural techniques, since it requires the presence of lipids to fold and function properly. Purified p7 can be incorporated into phospholipid bilayers and micelles. Initial solid-state nuclear magnetic resonance (NMR) studies of p7 in 14-O-PC/6-O-PC bicelles indicate that the protein contains helical segments that are tilted approximately 10° and 25° relative to the bilayer normal. A truncated construct corresponding to the second transmembrane domain of p7 is shown to have properties similar to those of the full-length protein, and was used to determine that the helix segment tilted at 10° is in the C-terminal portion of the protein. The addition of the channel blocker amantadine to the full-length protein resulted in selective chemical shift changes, demonstrating that NMR has a potential role in the development of drugs targeted to p7

    Development and utilisation of an In Vitro Assay for functional analysis of the Hepatitis C Virus p7 protein

    No full text
    The hepatitis C virus protein p7 is a 63 amino acid membrane protein that is able to oligomerise and functions as an ion channel in artificial bilayer systems, displaying sensitivity to amantadine as well as a range of other small molecule inhibitors. Consequently, p7 has been categorised as a member of the viroporin family; small virally encoded proteins that increase membrane permeability via their ability to oligomerise within host cell membranes.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Determinants of hepatitis C virus p7 ion channel function and drug sensitivity identified in vitro

    No full text
    Hepatitis C virus (HCV) chronically infects 170 million individuals, causing severe liver disease. Although antiviral chemotherapy exists, the current regimen is ineffective in 50% of cases due to high levels of innate virus resistance. New, virus-specific therapies are forthcoming although their development has been slow and they are few in number, driving the search for new drug targets. The HCV p7 protein forms an ion channel in vitro and is critical for the secretion of infectious virus. p7 displays sensitivity to several classes of compounds, making it an attractive drug target. We recently demonstrated that p7 compound sensitivity varies according to viral genotype, yet little is known of the residues within p7 responsible for channel activity or drug interactions. Here, we have employed a liposome-based assay for p7 channel function to investigate the genetic basis for compound sensitivity. We demonstrate using chimeric p7 proteins that neither the two trans-membrane helices nor the p7 basic loop individually determines compound sensitivity. Using point mutation analysis, we identify amino acids important for channel function and demonstrate that null mutants exert a dominant negative effect over wild-type protein. We show that, of the three hydrophilic regions within the amino-terminal trans-membrane helix, only the conserved histidine at position 17 is important for genotype 1b p7 channel activity. Mutations predicted to play a structural role affect both channel function and oligomerization kinetics. Lastly, we identify a region at the p7 carboxy terminus which may act as a specific sensitivity determinant for the drug amantadine

    Resistance mutations define specific antiviral effects for inhibitors of the hepatitis C virus p7 ion channel

    No full text
    The hepatitis C virus (HCV) p7 ion channel plays a critical role during infectious virus production and represents an important new therapeutic target. Its activity is blocked by structurally distinct classes of small molecules, with sensitivity varying between isolate p7 sequences. Although this is indicative of specific protein–drug interactions, a lack of high‐resolution structural information has precluded the identification of inhibitor binding sites, and their modes of action remain undefined. Furthermore, a lack of clinical efficacy for existing p7 inhibitors has cast doubt over their specific antiviral effects. We identified specific resistance mutations that define the mode of action for two classes of p7 inhibitor: adamantanes and alkylated imino sugars (IS). Adamantane resistance was mediated by an L20F mutation, which has been documented in clinical trials. Molecular modeling revealed that L20 resided within a membrane‐exposed binding pocket, where drug binding prevented low pH‐mediated channel opening. The peripheral binding pocket was further validated by a panel of adamantane derivatives as well as a bespoke molecule designed to bind the region with high affinity. By contrast, an F25A polymorphism found in genotype 3a HCV conferred IS resistance and confirmed that these compounds intercalate between p7 protomers, preventing channel oligomerization. Neither resistance mutation significantly reduced viral fitness in culture, consistent with a low genetic barrier to resistance occurring in vivo. Furthermore, no cross‐resistance was observed for the mutant phenotypes, and the two inhibitor classes showed additive effects against wild‐type HCV. Conclusion: These observations support the notion that p7 inhibitor combinations could be a useful addition to future HCV‐specific therapies

    The stability of secreted, acid-labile H77/JFH-1 hepatitis C virus (HCV) particles is altered by patient isolate genotype 1a p7 sequences

    Get PDF
    Secreted infectious particles generated by the genotype 2a JFH-1 hepatitis C virus infectious clone are resistant to acidic pH, whereas intracellular virions remain acid-labile. Thus, JFH-1 particles are thought to undergo pH maturation as they are secreted from the cell. Here, we demonstrate that both infectious intracellular and secreted genotype 1a (H77)/JFH-1 chimaeric particles display enhanced acid sensitivity compared with JFH-1, although pH maturation still occurs upon release. Introduction of p7 sequences from genotype 1a infected HCV patients into the H77/JFH-1 background yielded variable effects on infectious particle production and sensitivity to small molecule inhibitors. However, two selected patient p7 sequences increased the acid stability of secreted, but not intracellular H77/JFH-1 particles, suggesting that p7 directly influences particle pH maturation via an as yet undefined mechanism. We propose that HCV particles vary in acid stability, and that this may be dictated by variations in both canonical structural proteins and p7
    corecore