1,644 research outputs found

    Alpine topography of the Gamburtsev Subglacial Mountains, Antarctica, mapped from ice sheet surface morphology

    Get PDF
    Landscapes buried beneath the Antarctic Ice Sheet preserve information about the geologic and geomorphic evolution of the continent both before and during the wide-scale glaciation that began roughly 34×106 years ago. Since the inception of this ice sheet, some areas have remained cold-based and non-erosive, preserving ancient landscapes remarkably intact. The Gamburtsev Subglacial Mountains in central East Antarctica are one such landscape, maintaining evidence of tectonic, fluvial and glacial controls on their distinctly alpine morphology. The central Gamburtsev Mountains have previously been surveyed using airborne ice-penetrating radar; however, many questions remain as to their evolution and their influence on the East Antarctic Ice Sheet, including where in the region to drill for a 1.5×106 year-long “oldest-ice” core. Here, we derive new maps of the planform geometry of the Gamburtsev Subglacial Mountains from satellite remote sensing datasets of the ice sheet surface, based on the relationship between bed roughness and ice surface morphology. Automated and manual approaches to mapping were tested and validated against existing radar data and elevation models. Manual mapping was more effective than automated approaches at reproducing bed features observed in radar data, but a hybrid approach is suggested for future work. The maps produced here show the detail of mountain ridges and valleys on wavelengths significantly smaller than the spacing of existing radar flightlines, and mapping has extended well beyond the confines of existing radar surveys. Morphometric analysis of the mapped landscape reveals that it constitutes a preserved (>34 Ma) dendritic valley network, with some evidence for modification by topographically confined glaciation prior to ice sheet inception. The planform geometry of the landscape is a significant control on locations of basal melting, subglacial hydrological flows and the stability of the ice sheet over time, so the maps presented here may help to guide decisions about where to search for oldest ice

    Extensive and anomalous grounding line retreat at Vanderford Glacier, Vincennes Bay, Wilkes Land, East Antarctica

    Get PDF
    Wilkes Land, East Antarctica, has been losing mass at an accelerating rate over recent decades in response to enhanced oceanic forcing. Overlying the Aurora Subglacial Basin, it has been referred to as the ‘weak underbelly’ of the East Antarctic Ice Sheet and is drained by several major outlet glaciers. Despite their potential importance, few of these glaciers have been studied in detail. This includes the six outlet glaciers which drain into Vincennes Bay, a region recently discovered to have the warmest intrusions of modified Circumpolar Deep Water (mCDW) ever recorded in East Antarctica. Here, we use remotely sensed optical imagery, differential satellite aperture radar interferometry (DInSAR) and datasets of ice surface velocity, ice surface elevation and grounding line position, to investigate ice dynamics between 1963 and 2022. Decadal trends in frontal position are observed across the Vincennes Bay outlet glaciers, potentially correlated to variations in sea ice production. Ice surface velocities were generally stable between 2000 and 2021, with some fluctuations measured across the grounding line of Bond East Glacier. Changes in ice surface elevation were spatially variable, but a clear and consistent thinning trend was measured at Vanderford Glacier between 2003 and 2020. Enhanced rates of ice thinning were seen across each of the Vanderford, Adams, Anzac, and Underwood Glaciers between 2017 and 2020. Most importantly, our results confirm extensive grounding line retreat at Vanderford Glacier, measured at 18.6 km between 1996 and 2020. Such rapid grounding line retreat (0.8 km yr-1) is consistent with the notion that warm mCDW is able to access deep cavities formed below the Vanderford Ice Shelf, driving high rates of basal melting. With a retrograde slope observed inland along the Vanderford Trench, such oceanic forcing may have significant implications for the future stability of Vanderford Glacier

    Seasonal evolution of supraglacial lakes on an East Antarctic outlet glacier

    Get PDF
    Supraglacial lakes are known to influence ice melt and ice flow on the Greenland ice sheet and potentially cause ice shelf disintegration on the Antarctic Peninsula. In East Antarctica, however, our understanding of their behavior and impact is more limited. Using >150 optical satellite images and meteorological records from 2000 to 2013, we provide the first multiyear analysis of lake evolution on Langhovde Glacier, Dronning Maud Land (69°11′S, 39°32′E). We mapped 7990 lakes and 855 surface channels up to 18.1 km inland (~670 m above sea level) from the grounding line and document three pathways of lake demise: (i) refreezing, (ii) drainage to the englacial/subglacial environment (on the floating ice), and (iii) overflow into surface channels (on both the floating and grounded ice). The parallels between these mechanisms, and those observed on Greenland and the Antarctic Peninsula, suggest that lakes may similarly affect rates and patterns of ice melt, ice flow, and ice shelf disintegration in East Antarctica

    Subglacial valleys preserved in the highlands of south and east Greenland record restricted ice extent during past warmer climates

    Get PDF
    The Greenland Ice Sheet is a key contributor to contemporary global sea level rise, but its long-term history and response to episodes of warming in Earth's geological past remain uncertain. The terrain covered by the ice sheet comprises ∼ 79 % of Greenland and ∼ 1.1 % of the Earth's land surface and contains geomorphological records that may provide valuable insights into past ice-sheet behaviour. Here we use ice surface morphology and radio-echo sounding data to identify ice-covered valleys within the highlands of southern and eastern Greenland and use numerical ice-sheet modelling to constrain the climatological and glaciological conditions responsible for valley incision. Our mapping reveals intricate subglacial valley networks with morphologies that are indicative of substantial glacial modification of an inherited fluvial landscape, yet many of these valleys are presently situated beneath cold-based, slow-moving (i.e. non-erosive) ice. We use the morphology of the valleys and our simple ice-sheet model experiments to infer that incision likely occurred beneath erosive mountain valley glaciers during one or more phases of Greenland's glacial history when ice was restricted to the southern and eastern highlands and when Greenland's contribution to barystatic sea level was up to +7 m relative to today. We infer that this valley incision primarily occurred prior to the growth of a continental-scale ice sheet, most likely during the late Miocene (ca. 7–5 Ma) and/or late Pliocene (ca. 3.6–2.6 Ma). Our findings therefore provide new data-based constraints on early Greenland Ice Sheet extent and dynamics that can serve as valuable boundary conditions in models of regional and global palaeoclimate during past warm periods that are important analogues for climate change in the 21st century and beyond

    Extensive palaeo-surfaces beneath the Evans–Rutford region of the West Antarctic Ice Sheet control modern and past ice flow

    Get PDF
    The subglacial landscape of Antarctica records and influences the behaviour of its overlying ice sheet. However, in many places, the evolution of the landscape and its control on ice sheet behaviour have not been investigated in detail. Using recently released radio-echo sounding data, we investigate the subglacial landscape of the Evans–Rutford region of West Antarctica. Following quantitative analysis of the landscape morphology under ice-loaded and ice-unloaded conditions, we identify 10 flat surfaces distributed across the region. Across these 10 surfaces, we identify two distinct populations based on clustering of elevations, which potentially represent remnants of regionally coherent pre-glacial surfaces underlying the West Antarctic Ice Sheet (WAIS). The surfaces are bounded by deeply incised glacial troughs, some of which have potential tectonic controls. We assess two hypotheses for the evolution of the regional landscape: (1) passive-margin evolution associated with the break-up of the Gondwana supercontinent or (2) an extensive planation surface that may have been uplifted in association with either the West Antarctic Rift System or cessation of subduction at the base of the Antarctic Peninsula. We suggest that passive-margin evolution is the most likely of these two mechanisms, with the erosion of glacial troughs adjacent to, and incising, the flat surfaces likely having coincided with the growth of the WAIS. These flat surfaces also demonstrate similarities to other identified surfaces, indicating that a similar formational process may have been acting more widely around the Weddell Sea embayment. The subsequent fluctuations of ice flow, basal thermal regime, and erosion patterns of the WAIS are therefore controlled by the regional tectonic structures

    An ancient river landscape preserved beneath the East Antarctic Ice Sheet

    Get PDF
    The East Antarctic Ice Sheet (EAIS) has its origins ca. 34 million years ago. Since then, the impact of climate change and past fluctuations in the EAIS margin has been reflected in periods of extensive vs. restricted ice cover and the modification of much of the Antarctic landscape. Resolving processes of landscape evolution is therefore critical for establishing ice sheet history, but it is rare to find unmodified landscapes that record past ice conditions. Here, we discover an extensive relic pre-glacial landscape preserved beneath the central EAIS despite millions of years of ice cover. The landscape was formed by rivers prior to ice sheet build-up but later modified by local glaciation before being dissected by outlet glaciers at the margin of a restricted ice sheet. Preservation of the relic surfaces indicates an absence of significant warm-based ice throughout their history, suggesting any transitions between restricted and expanded ice were rapid

    Bioengineering silicon quantum dot theranostics using a network analysis of metabolomic and proteomic data in cardiac ischemia

    Get PDF
    Metabolomic profiling is ideally suited for the analysis of cardiac metabolism in healthy and diseased states. Here, we show that systematic discovery of biomarkers of ischemic preconditioning using metabolomics can be translated to potential nanotheranostics. Thirty-three patients underwent percutaneous coronary intervention (PCI) after myocardial infarction. Blood was sampled from catheters in the coronary sinus, aorta and femoral vein before coronary occlusion and 20 minutes after one minute of coronary occlusion. Plasma was analysed using GC-MS metabolomics and iTRAQ LC-MS/MS proteomics. Proteins and metabolites were mapped into the Metacore network database (GeneGo, MI, USA) to establish functional relevance. Expression of 13 proteins was significantly different (p<0.05) as a result of PCI. Included amongst these was CD44, a cell surface marker of reperfusion injury. Thirty-eight metabolites were identified using a targeted approach. Using PCA, 42% of their variance was accounted for by 21 metabolites. Multiple metabolic pathways and potential biomarkers of cardiac ischemia, reperfusion and preconditioning were identified. CD44, a marker of reperfusion injury, and myristic acid, a potential preconditioning agent, were incorporated into a nanotheranostic that may be useful for cardiovascular applications. Integrating biomarker discovery techniques into rationally designed nanoconstructs may lead to improvements in disease-specific diagnosis and treatment

    The deglacial history of 79N glacier and the Northeast Greenland Ice Stream

    Get PDF
    Acknowledgements This work was funded by NERC Standard Grant NE/N011228/1. We thank the Alfred Wegner Institute, and particularly Hicham Rafiq and Daniel Steinhage, for their significant logistic support through the iGRIFF project. Additional support was provided from Station Nord (Jørgen Skafte), Nordland Air, Air Greenland, the Joint Arctic Command and the Department of Geography, Durham University. Naalakkersuisut, Government of Greenland, provided Scientific Survey (VU-00121) and Export (046/2017) licences for this work. We would also like to thank our Field Ranger Isak (Nanu-Travel) and dog Ooni for keeping us safe in the field. TCN Sample preparation was carried out at the National Environmental Isotope Facility, Scottish Universities Environmental Research Centre under grant allocation 9185.0814. Chris Orton in the Cartographic Unit, Geography, Durham University edited several figures. This paper is dedicated to Mr Arnold Jones – a true Quaternarist.Peer reviewe

    Bedrock erosion surfaces record former East Antarctic Ice Sheet extent

    Get PDF
    East Antarctica hosts large subglacial basins into which the East Antarctic Ice Sheet (EAIS) likely retreated during past warmer climates. However, the extent of retreat remains poorly constrained, making quantifying past and predicted future contributions to global sea level rise from these marine basins challenging. Geomorphological analysis and flexural modeling within the Wilkes Subglacial Basin is used to reconstruct the ice margin during warm intervals of the Oligocene–Miocene. Flat‐lying bedrock plateaus are indicative of an ice sheet margin positioned >400–500 km inland of the modern grounding zone for extended periods of the Oligocene–Miocene, equivalent to a 2 meter rise in global sea level. Our findings imply that if major EAIS retreat occurs in the future, isostatic rebound will enable the plateau surfaces to act as seeding points for extensive ice rises, thus limiting extensive ice margin retreat of the scale seen during the early EAIS
    corecore