509 research outputs found

    SBAR, communication, and patient safety: an integrated literature review

    Get PDF
    Communication errors are a common cause of adverse patient safety events in the healthcare field. The Situation-Background-Assessment-Recommendation (SBAR) communication tool was introduced in 2002 to guide the communication of critical patient-care information. The purpose of this integrated literature review was to determine how the use of the SBAR tool during handoff of critical information affects communication between healthcare providers and patient safety. An integrated literature review approach was chosen due to the varying methodologies and multiple variables that have been used in the study of SBAR. The combined search terms of “SBAR”, “Communication”, and “Patient Safety” were entered into PubMed, the Cumulative Index of Nursing Research, and Cochrane databases to find English language, peer reviewed articles published within the last 10 years. The resulting articles were then analyzed for recurring themes. Review of the literature resulted in the following themes: the SBAR tool creates a common language for communication, increases the confidence of users, results in more effective and efficient communication, improves patient safety outcomes, and promotes a culture of patient safety in healthcare organizations. The benefits of SBAR can be divided into primary and secondary benefits. Primary benefits result from characteristics unique to the SBAR tool, while secondary benefits result from the standardization process of communication. The primary benefits may make SBAR more advantageous than other standardized communication tools. Communication errors are a systemic problem in healthcare, often resulting in patient harm. Evidence of this review indicates SBAR as a simple and effective intervention for improving communication and patient safety

    RNAi gene knockdown in the poultry red mite, Dermanyssus gallinae (De Geer 1778), a tool for functional genomics

    Get PDF
    The authors gratefully acknowledge funding for this project from the Scottish Government Rural Affairs, Food and the Environment (RAFE) Strategic Research Portfolio 2016-2021. DRGP is supported by a research fellowship provided by the Moredun Foundation. WC is supported by a studentship provided by the University of Aberdeen and the Moredun Foundation.Peer reviewedPublisher PD

    FTO and MC4R Gene Variants Are Associated with Obesity in Polycystic Ovary Syndrome

    Get PDF
    Polycystic ovary syndrome (PCOS) is the leading cause of anovulatory infertility in women. It is also associated with metabolic disturbances that place women at increased risk for obesity and type 2 diabetes. There is strong evidence for familial clustering of PCOS and a genetic predisposition. However, the gene(s) responsible for the PCOS phenotypes have not been elucidated. This two-phase family-based and case-control genetic study was designed to address the question of whether SNPs identified as susceptibility loci for obesity in genome-wide association studies (GWAS) are also associated with PCOS and elevated BMI. Members of 439 families having at least one offspring with PCOS were genotyped for 15 SNPs previously shown to be associated with obesity. Linkage and association with PCOS was assessed using the transmission/disequilibrium test (TDT). These SNPs were also analyzed in an independent case-control study involving 395 women with PCOS and 176 healthy women with regular menstrual cycles. Only one of these 15 SNPs (rs2815752 in NEGR1) was found to have a nominally significant association with PCOS (χ2 = 6.11, P = 0.013), but this association failed to replicate in the case-control study. While not associated with PCOS itself, five SNPs in FTO and two in MC4R were associated with BMI as assessed with a quantitative-TDT analysis, several of which replicated association with BMI in the case-control cohort. These findings demonstrate that certain SNPs associated with obesity contribute to elevated BMI in PCOS, but do not appear to play a major role in PCOS per se. These findings support the notion that PCOS phenotypes are a consequence of an oligogenic/polygenic mechanism

    Radiocarbon dates from jar and coffin burials of the Cardamom Mountains reveal a unique mortuary ritual in Cambodia's late- to post-Angkor period (15th-17th centuries AD)

    Get PDF
    We present the first radiocarbon dates from previously unrecorded, secondary burials in the Cardamom Mountains, Cambodia. The mortuary ritual incorporates nautical tradeware ceramic jars and log coffins fashioned from locally harvested trees as burial containers, which were set out on exposed rock ledges at 10 sites in the eastern Cardamom Massif. The suite of 28 14C ages from 4 of these sites (Khnorng Sroal, Phnom Pel, Damnak Samdech, and Khnang Tathan) provides the first estimation of the overall time depth of the practice. The most reliable calendar date ranges from the 4 sites reveals a high- land burial ritual unrelated to lowland Khmer culture that was practiced from cal AD 1395 to 1650. The time period is concurrent with the 15th century decline of Angkor as the capital of the Khmer kingdom and its demise about AD 1432, and the subsequent shift of power to new Mekong trade ports such as Phnom Penh, Udong, and Lovek. We discuss the Cardamom ritual relative to known funerary rituals of the pre to post-Angkorian periods, and to similar exposed jar and coffin burial rituals in Mainland and Island Southeast Asia

    A comparative genomics screen identifies a Sinorhizobium meliloti 1021 sodM-like gene strongly expressed within host plant nodules

    Get PDF
    Background We have used the genomic data in the Integrated Microbial Genomes system of the Department of Energy’s Joint Genome Institute to make predictions about rhizobial open reading frames that play a role in nodulation of host plants. The genomic data was screened by searching for ORFs conserved in α-proteobacterial rhizobia, but not conserved in closely-related non-nitrogen-fixing α-proteobacteria. Results Using this approach, we identified many genes known to be involved in nodulation or nitrogen fixation, as well as several new candidate genes. We knocked out selected new genes and assayed for the presence of nodulation phenotypes and/or nodule-specific expression. One of these genes, SMc00911, is strongly expressed by bacterial cells within host plant nodules, but is expressed minimally by free-living bacterial cells. A strain carrying an insertion mutation in SMc00911 is not defective in the symbiosis with host plants, but in contrast to expectations, this mutant strain is able to out-compete the S. meliloti 1021 wild type strain for nodule occupancy in co-inoculation experiments. The SMc00911 ORF is predicted to encode a “SodM-like” (superoxide dismutase-like) protein containing a rhodanese sulfurtransferase domain at the N-terminus and a chromate-resistance superfamily domain at the C-terminus. Several other ORFs (SMb20360, SMc01562, SMc01266, SMc03964, and the SMc01424-22 operon) identified in the screen are expressed at a moderate level by bacteria within nodules, but not by free-living bacteria. Conclusions Based on the analysis of ORFs identified in this study, we conclude that this comparative genomics approach can identify rhizobial genes involved in the nitrogen-fixing symbiosis with host plants, although none of the newly identified genes were found to be essential for this process

    Bioengineering commensal bacteria-derived outer membrane vesicles for delivery of biologics to the gastrointestinal and respiratory tract.

    Get PDF
    Gram-negative bacteria naturally produce and secrete nanosized outer membrane vesicles (OMVs). In the human gastrointestinal tract, OMVs produced by commensal Gram-negative bacteria can mediate interactions amongst host cells (including between epithelial cells and immune cells) and maintain microbial homeostasis. This OMV-mediated pathway for host-microbe interactions could be exploited to deliver biologically active proteins to the body. To test this we engineered the Gram-negative bacterium Bacteroides thetaiotaomicron (Bt), a prominent member of the intestinal microbiota of all animals, to incorporate bacteria-, virus- and human-derived proteins into its OMVs. We then used the engineered Bt OMVs to deliver these proteins to the respiratory and gastrointestinal (GI)-tract to protect against infection, tissue inflammation and injury. Our findings demonstrate the ability to express and package both Salmonella enterica ser. Typhimurium-derived vaccine antigens and influenza A virus (IAV)-derived vaccine antigens within or on the outer membrane of Bt OMVs. These antigens were in a form capable of eliciting antigen-specific immune and antibody responses in both mucosal tissues and systemically. Furthermore, immunisation with OMVs containing the core stalk region of the IAV H5 hemagglutinin from an H5N1 strain induced heterotypic protection in mice to a 10-fold lethal dose of an unrelated subtype (H1N1) of IAV. We also showed that OMVs could express the human therapeutic protein, keratinocyte growth factor-2 (KGF-2), in a stable form that, when delivered orally, reduced disease severity and promoted intestinal epithelial repair and recovery in animals administered colitis-inducing dextran sodium sulfate. Collectively, our data demonstrates the utility and effectiveness of using Bt OMVs as a mucosal biologics and drug delivery platform technology

    Bioengineering commensal bacteria-derived outer membrane vesicles for delivery of biologics to the gastrointestinal and respiratory tract

    Get PDF
    Gram-negative bacteria naturally produce and secrete nanosized outer membrane vesicles (OMVs). In the human gastrointestinal tract, OMVs produced by commensal Gram-negative bacteria can mediate interactions amongst host cells (including between epithelial cells and immune cells) and maintain microbial homeostasis. This OMV-mediated pathway for host-microbe interactions could be exploited to deliver biologically active proteins to the body. To test this we engineered the Gram-negative bacterium Bacteroides thetaiotaomicron (Bt), a prominent member of the intestinal microbiota of all animals, to incorporate bacteria-, virus- and human-derived proteins into its OMVs. We then used the engineered Bt OMVs to deliver these proteins to the respiratory and gastrointestinal (GI)-tract to protect against infection, tissue inflammation and injury. Our findings demonstrate the ability to express and package both Salmonella enterica ser. Typhimurium-derived vaccine antigens and influenza A virus (IAV)-derived vaccine antigens within or on the outer membrane of Bt OMVs. These antigens were in a form capable of eliciting antigen-specific immune and antibody responses in both mucosal tissues and systemically. Furthermore, immunisation with OMVs containing the core stalk region of the IAV H5 hemagglutinin from an H5N1 strain induced heterotypic protection in mice to a 10-fold lethal dose of an unrelated subtype (H1N1) of IAV. We also showed that OMVs could express the human therapeutic protein, keratinocyte growth factor-2 (KGF-2), in a stable form that, when delivered orally, reduced disease severity and promoted intestinal epithelial repair and recovery in animals administered colitis-inducing dextran sodium sulfate. Collectively, our data demonstrates the utility and effectiveness of using Bt OMVs as a mucosal biologics and drug delivery platform technology

    DNA sequence level analyses reveal potential phenotypic modifiers in a large family with psychiatric disorders

    Get PDF
    Psychiatric disorders are a group of genetically related diseases with highly polygenic architectures. Genome-wide association analyses have made substantial progress towards understanding the genetic architecture of these disorders. More recently, exome- and whole-genome sequencing of cases and families have identified rare, high penetrant variants that provide direct functional insight. There remains, however, a gap in the heritability explained by these complementary approaches. To understand how multiple genetic variants combine to modify both severity and penetrance of a highly penetrant variant, we sequenced 48 whole genomes from a family with a high loading of psychiatric disorder linked to a balanced chromosomal translocation. The (1;11)(q42;q14.3) translocation directly disrupts three genes: DISC1, DISC2, DISC1FP and has been linked to multiple brain imaging and neurocognitive outcomes in the family. Using DNA sequence-level linkage analysis, functional annotation and population-based association, we identified common and rare variants in GRM5 (minor allele frequency (MAF) > 0.05), PDE4D (MAF > 0.2) and CNTN5 (MAF < 0.01) that may help explain the individual differences in phenotypic expression in the family. We suggest that whole-genome sequencing in large families will improve the understanding of the combined effects of the rare and common sequence variation underlying psychiatric phenotypes

    Clinically Actionable Hypercholesterolemia and Hypertriglyceridemia in Children with Nonalcoholic Fatty Liver Disease

    Get PDF
    OBJECTIVE: To determine the percentage of children with nonalcoholic fatty liver disease (NAFLD) in whom intervention for low-density lipoprotein cholesterol or triglycerides was indicated based on National Heart, Lung, and Blood Institute guidelines. STUDY DESIGN: This multicenter, longitudinal cohort study included children with NAFLD enrolled in the National Institute of Diabetes and Digestive and Kidney Diseases Nonalcoholic Steatohepatitis Clinical Research Network. Fasting lipid profiles were obtained at diagnosis. Standardized dietary recommendations were provided. After 1 year, lipid profiles were repeated and interpreted according to National Heart, Lung, and Blood Institute Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction. Main outcomes were meeting criteria for clinically actionable dyslipidemia at baseline, and either achieving lipid goal at follow-up or meeting criteria for ongoing intervention. RESULTS: There were 585 participants, with a mean age of 12.8 years. The prevalence of children warranting intervention for low-density lipoprotein cholesterol at baseline was 14%. After 1 year of recommended dietary changes, 51% achieved goal low-density lipoprotein cholesterol, 27% qualified for enhanced dietary and lifestyle modifications, and 22% met criteria for pharmacologic intervention. Elevated triglycerides were more prevalent, with 51% meeting criteria for intervention. At 1 year, 25% achieved goal triglycerides with diet and lifestyle changes, 38% met criteria for advanced dietary modifications, and 37% qualified for antihyperlipidemic medications. CONCLUSIONS: More than one-half of children with NAFLD met intervention thresholds for dyslipidemia. Based on the burden of clinically relevant dyslipidemia, lipid screening in children with NAFLD is warranted. Clinicians caring for children with NAFLD should be familiar with lipid management
    corecore