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Abstract
Psychiatric disorders are a group of genetically related diseases with highly polygenic architectures. Genome-wide association
analyses have made substantial progress towards understanding the genetic architecture of these disorders. More recently,
exome- and whole-genome sequencing of cases and families have identified rare, high penetrant variants that provide direct
functional insight. There remains, however, a gap in the heritability explained by these complementary approaches. To
understand how multiple genetic variants combine to modify both severity and penetrance of a highly penetrant variant, we
sequenced 48 whole genomes from a family with a high loading of psychiatric disorder linked to a balanced chromosomal
translocation. The (1;11)(q42;q14.3) translocation directly disrupts three genes: DISC1, DISC2, DISC1FP and has been linked
to multiple brain imaging and neurocognitive outcomes in the family. Using DNA sequence-level linkage analysis, functional
annotation and population-based association, we identified common and rare variants in GRM5 (minor allele frequency
(MAF) > 0.05), PDE4D (MAF > 0.2) and CNTN5 (MAF < 0.01) that may help explain the individual differences in
phenotypic expression in the family. We suggest that whole-genome sequencing in large families will improve the
understanding of the combined effects of the rare and common sequence variation underlying psychiatric phenotypes.

Introduction

Schizophrenia (SCZ), bipolar disorder (BD) and major
depressive disorder (MDD) are debilitating psychiatric
disorders, with MDD ranked by the World Health Organi-
sation as the single largest contributor to global disability
[1]. Family, twin and adoption studies have shown a strong
heritable component to these disorders [2, 3], with herit-
ability estimates of 0.37 for MDD, 0.75 for BD and 0.81 for
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SCZ [4]. Genome-wide association studies (GWAS) have
identified over a hundred common single nucleotide poly-
morphisms (SNPs) robustly associated with these disorders,
most for SCZ, but all with small effect sizes [5–7]. Indivi-
dually rare copy number variants from case–control studies
and exome sequencing-derived missense variants with large
effects have also been reported [8–12]. However, even
within families, individuals with these variants show varia-
bility in clinical phenotype [13–16]. Thus, the evidence to
date suggests that psychiatric disorders have a complex and
heterogeneous genetic architecture, with many potential
genetic routes leading to the same clinical outcome, some
variants associated with a broad range of conditions, and
with both common and rare variants playing a role [4, 17].

Family-based studies can be used to study the effects of
common and rare variants in the context of a less heterogeneous
genetic background, and could allow us to better understand the
intra-family variation and reduced penetrance commonly seen
in complex traits. We have analysed the whole-genome
sequences of 48 out of 107 members of a large Scottish
family with a high loading of broad spectrum major mental
illness. Members of the family carry a balanced translocation
between chromosomes 1 and 11 (1q42; 11q14.3, hereafter t
(1;11)) that is significantly linked to major mental illness, with a
maximum logarithm of the odds (LOD) score of 7.9 for a broad
model including individuals with SCZ, BD, schizoaffective
disorder (SCZAFF), recurrent MDD (rMDD), cyclothymia,
single episode MDD (sMDD) plus minor diagnoses (including:
alcoholism, adolescent conduct disorder and anxiety) [18].
However, nine family members without the translocation also
have psychiatric diagnoses, whereas two carriers show no evi-
dence of psychiatric disorder, suggesting that additional factors
may be involved in the clinical phenotype. We hypothesised
that the variation in phenotypic expression in the family may
reflect the inheritance of the translocation and a variable subset
of predisposing/modifier variants. We combined genome-wide
variance component multipoint linkage, regional two-point
linkage and haplotype analyses on the full spectrum of variants
within the t(1;11) family to identify additional potential risk/
modifier loci and tested the association of these loci in two
case–control samples drawn from the UK population.

Materials and methods

The materials and methods are described in full in the
Supplementary Information.

Details of the translocation family are given in Thomson
et al. [18] (see also: Supplementary methods: Diagnoses
and phenotypic models in the family). This study was
approved by the Multi-Centre Research Ethics Committee
in Scotland (09/MRE00/81). All study participants gave
their written, informed consent.

DNA samples were sequenced to a median coverage of
> 30 over three lanes of a HiSeq2000 using 101 bp paired-
end reads. After local realignment around indels and base
quality score recalibration of each library, single-nucleotide
variants (SNVs) were called with GATK v2.4.9 [19-21],
using the multi-sample joint calling mode to achieve con-
sistent calling across samples (Supplementary table 1:
GATK summary table; Supplementary figure 1a: Individual
sample coverage; Supplementary methods: WGS sequen-
cing and variant calling). Variant quality score recalibration
(VQSR) parameters were applied as recommended in the
GATK best practices documentation for GATK v2.4.9. The
“truth sensitivity filter level” was set at 99.0. Deletions ≥ 1
kb that map to a single genomic location were detected by
event-wise testing based on read depth [22] (Supplementary
methods: Copy Number Variation (CNV) calling).

Validation of GATK VQSR modelling showed that 94%
pass variants and 52% of failed variants were validated by
custom designed Taqman assays (Supplementary methods:
Variant validation-VQSR filter). All variants were therefore
retained initially and an additional filter for Mendelian
segregation in the family applied.

Variance component linkage analyses were performed
using the SOLAR software package [23] (Supplementary
methods: Linkage analysis). LOD scores were adjusted for
deviation of the phenotype distribution from normal but,
due to the nested nature of the phenotypes, were not
adjusted for multiple testing. SNVs within the genomic
regions under the linkage peaks were phased using the
software SHAPEIT (v2.r83725) and the 1000 Genomes
Phase 1 integrated reference panel26, incorporating the
pedigree information to increase accuracy (Supplementary
methods: Haplotype phasing). Minimal haplotype regions
were defined by recombination breakpoints in the affected
individuals in the family. Mixed logistic or linear regression
models, fitting the inverse relationship matrix as a random
effect to control for familial structure, were used to test
phenotype associations of haplotypes using ASREML-R
(www.vsni.co.uk/software/asreml). The significance of
fixed effects within the model was assessed using a condi-
tional Wald F-test. A model p-value of < 0.05 was con-
sidered significant. In addition to family structure, age
and sex were fitted in analyses of global assessment of
functioning (GAF), current IQ and attention/processing
speed.

Association studies of affective disorder and related traits
were performed in two population-based cohorts: Genera-
tion Scotland: Scottish Family Health Study (GS:SFHS)
[24–26] and UK Biobank (UKB) [27], fitting principal
components and cohort/phenotypes appropriate covariates
using subsets of unrelated individuals (see Supplementary
methods: UK Population-based cohorts: GS:SFHS and
UKB and region-wide association analyses).

N. M. Ryan et al.
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Results

Whole-genome sequencing in the translocation
family

Whole-genome sequencing was performed on comprising
all 48 individuals from the t(1;11) family for whom DNA
was available. The final dataset included 9.76 million SNVs
present in at least one individual of which 16.46 and 5.80%
were not found in the 1000 Genomes phase 3 European [28]
or gnomAD non-Finnish European subsets, respectively,
and 5.41% were found in neither repository (July 1017;
Supplementary figure 1b: Minor allele frequencies (MAF)
of SNVs in 1000 Genomes phase 3 European sample (EUR)
and GnomAD non-Finnish European (NFE)). In addition,
using a read depth approach, 27 unique deletions were
identified with sizes ranging from 1.2 to 145 kb.

Evidence for the effects of additional regions on risk
of psychiatric disorder in the family

To study the genetic contribution to the range of diagnoses
present in this family, nine phenotypic models were eval-
uated using genome-wide linkage analyses of the 48 t(1;11)
family members; of whom 19 are translocation carriers (18
affected; 1 unaffected) and 29 non-carriers (6 affected; 22
unaffected; 1 unknown). Table 1 shows the numbers of
cases and controls included in each model (Supplementary
Table 2: Phenotype models split by translocation status).
The maximum theoretical LOD (mtLOD) and the observed
two-point LOD for the translocation was generated for each
model using only the set of family members sequenced in
this study. The translocation explained the majority of the
mtLOD, particularly for Model A: SCZ, BD and SCZAFF
(number affected= 6, 6 translocation carriers, 0 non-

carriers) and Model H: SCZ and SCZAFF (number affected
= 4, 4 translocation carriers, 0 non-carriers). However, the
translocation LOD explained less than half of the mtLOD
for affective disorders (Model F; number affected= 14, 9
translocation carriers, 5 non-carriers), Psychosis (number
affected= 8, 8 translocation carriers, 0 non-carriers), and
the models containing minor diagnoses (Model C and
Model D; Table 1). This implies additional segregating
genetic factors, over and above the translocation, which
impact on the clinical presentation for these models.

Multipoint linkage analyses identified four genome-wide
significant (LOD ≥ 3.3) peaks: three on the translocation
chromosomes: one located on chr1q and two peaks on
chr11q (chr11q1 and chr11q2); and a fourth peak on chr5q
(Supplementary methods; Fig. 1, Table 2). The chr1q and
the chr11q1 linkage peaks show evidence for linkage across
all models, with maximum LODs for the broad phenotypic
models (Model C: any psychiatric diagnosis, and Model B:
SCZ, BD, SCZAFF, rMDD and cyclothymia). In contrast,
the chr11q2 and chr5q peaks were only significant for the
affective disorder phenotype (Model F: BD, rMDD and
MDD). Five further regions with LOD ≥ 2 were also iden-
tified, each of which was specific to a phenotype model
(Fig. 1, Table 2; plots for all chromosomes are given in
Supplementary Figure 2).

Minimum haplotype regions do not span the
translocation breakpoints but contribute to
prediction of psychiatric disorder in the family

The minimum haplotype regions were defined for each
genome-wide significant peak and the diagnoses of the
carriers identified (Supplementary Figure 3). Table 2 shows
the boundaries of these linkage regions. Information on all
the genes in the regions is given in Supplementary Table 3.

Table 1 Summary of the phenotypic models in the 48 individuals from the t(1;11) family

Model Diagnoses Affected Controls NA T-aff NT-aff mtLOD t(1;11)

Model A SCZ, BD, SCZAFF 6 23 19 6 0 3.2 2.8

Model B SCZ, BD, SCZAFF, rMDD, cyclothymia 15 23 10 13 2 8.6 6.7

Model C SCZ, BD, SCZAFF, rMDD, cyclothymia, MDD, adolescent conduct
disorder, generalised anxiety disorder, alcoholism

24 23 1 18 6 12 5.8

Model D MDD, adolescent conduct disorder, generalised anxiety disorder,
alcoholism

9 23 16 5 4 5.8 1.3

Model E SCZ, BD, SCZAFF, rMDD 12 23 13 10 2 6.9 4.8

Model F BD, rMDD, MDD 14 23 11 9 5 8.9 4.2

Model G BD, rMDD 8 23 17 6 2 5.7 3.1

Model H SCZ, SCZAFF 4 23 21 4 0 2.4 2.2

Psychosis Psychosis any diagnosis 8 23 17 8 0 4.4 1.9

Total 24 23 1 19 29

mtLOD, maximum theoretical LODs; t(1;11), the two-point LOD score for the translocation; number of affected translocation carriers (T-aff) and
affected non-carriers (NT-aff), further details are given in Supplementary Table 2

DNA sequence-level analyses reveal potential phenotypic modifiers in a large family with psychiatric. . .



The minimum haplotypes under the linkage peaks on
chromosomes 1 and 11 (chr1q, chr11q1 and chr11q2),
although adjacent to the translocation, do not include the
breakpoints (hg19: chr1: 231,950,368 and chr11:
90,361,108; Supplementary Figure 3a and 3b). The max-
imum multipoint LOD scores in the region of the translo-
cation are driven both by individuals with the translocation,
who share a wide flanking region, and by individuals with
psychiatric diagnoses who carry discrete regions shared
with the translocation carriers (Supplementary Information:
Haplotype phasing). The combination of haplotypes carried
by each family member and their diagnosis are shown in
Supplementary Table 4 (see also Fig. 2). The chr1q hap-
lotype and the chr11q1 haplotypes are defined by all 19 of

the translocation carriers and additional affected individuals
who do not carry the translocation (Supplementary Fig-
ures 3a and 3b). The chr11q2 haplotype is not present in
three of the translocation carriers; this region is defined by
recombination events in two translocation carriers (ID 18
and 19), beyond the recombination event inherited from the
married-in parent, and an individual with rMDD who does
not carry the translocation. The chr5q haplotype is shared
by 10 translocation carriers and 7 non-carriers (Supple-
mentary Figure 3c).

An indirect effect of the translocation in the family is to
“lock together” the translocation, chr1q, chr11q1 and
chr11q2 regions in translocation carriers. In translocation
carriers, the minimum shared haplotypes spanning the

Fig. 1 Multipoint linkage analysis of the t(1;11) family. Plots of the
chromosomes with multipoint linkage peaks with LOD ≥ 2 and a
summary table of the phenotype models (the colour coding reflecting
the colours of the models in the multipoint plots). The plots represent
multipoint LOD scores vs. chromosome position in Mb. Multipoint

LODs= 1, 2 and 3 annotated with grey, blue and red horizontal dotted
lines, respectively. The translocation breakpoints, T, are marked by a
red vertical line. For plots of all chromosomes, see Supplementary
Figure 2

N. M. Ryan et al.



breakpoints were defined (Supplementary Figures 2d and
2e). The haplotypes shared by the translocation carriers
spanned 17.5Mb on the derived chr1 and 22.2Mb on the
derived chr11. The size of these shared regions is consistent
with the lack of evidence for reduced recombination around
the translocation reported by He et al. [29].

Sequence-level analyses of the regions on chr1q and
chr11q1, shared by the translocated chromosomes that have
undergone recombination (IDs 18 and 19; Supplementary
Figure 3b) and three non-translocation carriers (siblings
with IDs 44 and 47, and the child of 44, ID 87; Fig. 2;
Supplementary Table 4: Summary of haplotype segregation
in the t(1;11) family), show that these haplotypes are near
identical to those on the derived chromosomes. Although it
is not possible to definitely show that these haplotypes are
inherited from the familial parent, these regions span mul-
tiple haplotype blocks in the Scottish population and the
combinations found on the derived chromosomes occur at
<1% frequency, suggesting that these haplotype arose once
in the family. One individual in the family appears to carry
two copies that are 97.3% identical across the chr11q1
region suggesting that regions homologous to the chromo-
somes flanking the translocation are present within the
Scottish population.

We next used mixed regression models to investigate the
contribution of each haplotype to phenotype prediction.
Given the relationships between the family members, and
the total number of individuals, the correlation structure
between the haplotypes is complex (Supplementary infor-
mation: Haplotype correlations). This must be considered
when interpreting the results of phenotypic prediction using
backward selection, as the translocation event, chr1q and
chr11q1 regions are likely to explain the same variance in
phenotype and be retained randomly in the models (Sup-
plementary Information: Regional correlations; Supple-
mentary Figure 4: Intra-family regional correlations).
Analyses of Model F (affective disorder) and Psychosis
suggest that additional haplotypes (chr2p, chr3q and chr5q),
in combination with the haplotypes on the derived chro-
mosomes, may contribute to the phenotypic heterogeneity
seen in the translocation family (Supplementary Informa-
tion: Phenotype prediction; Supplementary Table 5a and
5c). Age of onset was available for 23 of 24 of the indivi-
duals with a diagnosis of affective disorder (Model F). The
minimum models for this trait retained both chr11q2 and
chr16p (Supplementary Table 5c). In analyses of translo-
cation carriers only, no individual haplotype predicted
phenotype; however, combined analyses of all haplotypes
not on the translocated arms (chr5q–chr16p) did predict
Model F and Psychosis. One of the haplotypes that con-
tribute to Model F has entered the family through an
unaffected individual who married into a sub-branch of the
family (chr3q, sub-branch 2b, Fig. 2). In contrast, chr16pTa
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for Model F and chr2p for psychosis were present in the
founders of the family, whereas it is unknown whether
chr5q was inherited from the founders or through the non-
familial parent founder of branch 2 (Fig. 2: Segregation of
linked haplotypes within the pedigree).

Fine-mapping linked regions using two-point
linkage analyses

Detailed two-point linkage analysis was performed across
the haplotype-associated regions under the four genome-
wide significant multipoint linkage peaks and the five
regions with multipoint LODs ≥ 2. Two-point linkage was
performed on those variants that passed QC filters:
Hardy–Weinberg equilibrium (HWE) p > 0.001 and present
in at least three individuals with an additional raw
case–control odds ratio filter for the LOD ≥ 2 regions
(Supplementary Methods: Linkage analysis; Supplementary
Figures 5 and 6: Regional two-point summaries). The top
100 LOD scores for each of the haplotype regions, and for
all variants analysed in genome order, are listed in the
Supplementary Tables 6a-e.

With the caveat that two-point linkage can be unstable if
the population allele frequencies are mis-specified, the top
two-point LOD scores and the respective model for each

linkage region are shown in Table 2. No two-point LOD
score (mLODs) achieved the maximum theoretical LOD
scores (mtLODs, Table 1); however, the highest two-point
LODs for the chr11q1 (mLOD= 10.8; mtLOD= 12,
Model C: any diagnosis), chr11q2 (mLOD= 8.3;
mtLOD= 8.9, Model F: affective disorder) and chr4q
(mLOD= 4.7; mtLOD= 5.7, Model G: BD and rMDD)
regions explain the majority of the maximum theoretical
linkage signal. The four genome-wide significant linkage
regions and chr16p achieved higher maximum two-point
LODs than those of the translocation for the same models
(Table 1). Examination of the two-point linkage results
across the regions revealed multiple blocks of linkage in
each region with evidence that different subregions show
strongest linkage under different models (Supplementary
Figures 5 and 6; Supplementary Information: Two-point
linkage analyses). This may reflect the presence of multiple
risk loci within each region.

Many GWAS significant SNPs have been identified in
non-coding regions and are predicted to tag regulatory or
missense variants [30–33]. Functional annotation of var-
iants under the genome-wide significant linkage peaks
detected evidence of missense variants and brain expression
quantitative trait loci (eQTL) (Supplementary Information:
Functional annotation of variants under the genome-wide

Fig. 2 Segregation of linked haplotypes within the pedigree. Full
pedigree showing affected status under Model B (SCZ, BP, rMDD
and Cyclothymia; open—unaffected, black—affected, blue—other
diagnoses, grey—unknown) and carrier status of phenotype-linked
haplotypes in sequenced individuals (boxes: filled—haplotype carrier,

open—non-carriers). Blue star—CNTN5 CNV carriers. Red number-
ing—sub-branches of the pedigree. Legend shows, which sub-
branches contain the linked haplotypes and the source of the haplo-
type: F— familial or married-in ID

N. M. Ryan et al.



significant linkage peaks, Supplementary Tables 6a-e).
Variant effect prediction indicated that variants in CAPN2,
TP53BP2, NVL in chr1q; and CTSC and CNTN5 in chr11q1
and chr11q2, respectively, had a high probability of being
damaging (Polyphen) or deleterious (SIFT; Supplementary
Tables 7: Variant Effect Predictor annotation). High LOD
SNVs and SNPs in regions affected by deletions were
associated with eQTLs, with the strongest evidence in each
region for the genes: ENAH (rs75866472), GRM5
(rs10128749), CNTN5 (intronic deletion: DGV id:
esv2661704) and PDE4D (rs988827) in chr1q, chr11q1,
chr11q2 and chr5q, respectively (Supplementary Informa-
tion: Functional annotation of variants under the genome-
wide significant linkage peaks, Supplementary Tables 8:
Functional investigation of top LOD variants within the
phenotype-associated haplotypes).

Association analysis of the linkage regions in two
samples from the Scottish population

Sequence-level analyses of the linked haplotypes indicated
that these haplotypes may be present in the Scottish popu-
lation, and may be independently associated with risk.
Evidence for association between SNVs in the linked
regions and affective disorder outside of the family (Model
F, MDD and BD combined) was investigated using unre-
lated individuals from two population-based UK cohorts:
GS:SFHS (2060 cases and 4495 controls) and UKB (8294
cases and 15,872 controls) (Supplementary Figures 5 and 6,
Supplementary Tables 9a). No SNV reached genome-wide
significance, but nominal evidence (p < 5 × 10−4 in GS:
SFHS or UKB and p < 0.05 in the alternate cohort) was
found for association of GRM5 (chr11q1), CNTN5
(chr11q2), PDE4D (chr5q), LRRC7 (chr1p) and VSNL1
(chr2p) (Table 3).

To investigate the potential pleiotropy of the associated
haplotypes, cognitive, personality and mental health-related
traits associated with psychiatric disorders were tested for
association in GS:SFHS (Supplementary methods: Region-
wide association analyses; Table 3; Supplementary Tables 9b;
Supplementary Figures 7 and 8). Nominal association (p <
5 × 10-4) was identified for multiple traits and genes. Of these,
CNTN5 in chr11q2 showed evidence for nominal association
with number of episodes of depression (SCID), psychological
distress (GHQ-28B) and the cognitive variables: digit symbol
coding and Mill Hill vocabulary. Similarly, PDE4D in chr5q
was nominally associated with MDD, and Mill Hill vocabu-
lary. Multiple cognitive traits were also nominally associated
with SNPs in RAPGEF2 in chr4q (digit symbol coding, Mill
Hill vocabulary and the general cognitive factor g).

Although these cross-trait associations are in some cases
within the same subregion, as defined by the recombination
rates across the region in the 1000 Genome UK population,Ta
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for example, for affective disorder, cognitive variable and
number of episodes in CNTN5 (Supplementary Figure 7c),
or affective disorder, MDD and Mill Hill vocabulary in
PDE4D (Supplementary Figure 7d), this is not true for
affective disorder and psychological distress in CNTN5
(Supplementary Figure 7c), or affective disorder and MDD
in chr4q (Supplementary Figure 8d). These results suggest
that variants in the genes within the family-defined haplo-
types are associated, at low penetrance, in the UK popula-
tion and may modulate aspects of phenotype such as
number of episodes and cognitive ability.

Evidence of nominal association with cognitive and
mental health-related traits were therefore examined in the t
(1;11) family. Haplotype carrier status was used to predict
global function (GAF) [34], current IQ (Wechsler Abbre-
viated Scale of Intelligence) [35] and attention/processing
speed (Cambridge Neuropsychological Test Automated
Battery, CANTAB) [36]. No association was seen with any
haplotype and either current IQ or attention/processing
speed (p > 0.05). However, chr1q, chr11q1 and chr5q, but
not the translocation, predicted GAF (p < 0.05 adjusting for
age and sex (Supplementary Table 10: Association of
haplotypes with global function and cognitive variables in
the t(1;11) family). A backward selection mixed regression
model retained the translocation, chr11q1, chr5q and chr2p
in the minimal model for GAF (p= 1.2 × 10−4). This con-
firms a contribution of these haplotypes to global function
in the family.

The associations detected in the two UK-based cohorts
are not significant at the genome-wide level. The nominal
associations with affective disorder and related traits sug-
gest that, despite the evidence for a strong individual effects
in the family, these were not observed at a population level
with the sample sizes tested.

Common risk variants predict psychiatric disorder in
the translocation family

Using the latest publicly available summary statistic from
the Psychiatric Genetics Consortium (PGC) GWAS of
MDD [37], BD [6] and SCZ [7], we generated polygenic
risk scores (PRS) using PLINK v1.09 [38], p-value
threshold= 1, from the 48 family members (Supplementary
Table 5b: Phenotype prediction using PRS). PRS did not
predict Model F (BD, rMDD, MDD), Model B (SCZ, BD,
rMDD) or Model C (any diagnosis). PRS for both BD and
SCZ were, however, associated with psychosis, even when
the analysis was restricted to translocation carriers. Trans-
location status showed conditional association with psy-
chosis after adjusting for the variance explained by the PRS
(Supplementary Table 5c: Minus PRS - t1_11). Backward
selection of models containing all three PRS, translocation
status and all haplotypes retained haplotypes on the derived

chromosomes under all four phenotypic models and were
the only variables retained in Model B, Model C and Model
F (Supplementary Table 5c: Phenotype prediction). PRS
were not significantly associated with age of onset in the
family, suggesting that there was no evidence of an
increased load of common variants modifying the onset of
the phenotypes. To test whether there was an accumulation
of common risk variants with subsequent generations,
‘generation’ was used to predict PGC PRS. There was no
significant association between PGC PRS and generations
in the family (PRS-BD p= 0.063, PRS-MDD p= 0.148,
PRS-SCZ p= 0.691). These results suggest that common
risk variants, particularly those associated with BD and
SCZ, may contribute to psychosis within the family, but
there is no evidence of accumulation or loss of polygenic
risk over generations.

Discussion

The evidence for high heritability and familial clustering in
psychiatric disorders is counter balanced by the limitations
of current diagnostic criteria, over-lapping symptomatology
and absence of definitive biomarkers, physiology or
pathology. Using whole-genome sequencing, we investi-
gated the existence of disease-modifying loci in a large
Scottish pedigree in which a balanced t(1;11) translocation
predisposes to major psychiatric disorders. The Scottish t
(1;11) family is exceptional because of its size, longitudinal
clinical follow-up and detailed molecular genetic study. The
foundational finding is of a t(1;11) translocation that disrupts
three genes: DISC1, DISC2 and DISC1FP, alters DISC1
expression and results in production of abnormal fusion
transcripts [39, 40]. Direct disruption of DISC1 impacts on
neurodevelopment, glutamate-signalling, cognitive ability
and liability to psychiatric disorder [41–50]. Studies on
individuals from the t(1;11) family have identified abnorm-
alities in brain structure particularly white matter integrity
[51] and cortical thickness [18, 52], and in brain activation
identified through P300 amplitude and latency [53], as well
as activation during working memory tasks, and altered
glutamate signalling [18]. These functions are congruent
with prevailing hypotheses of neurodevelopmental and
synaptogenic origins of SCZ and related disorders. How-
ever, the penetrance of the t(1;11) is incomplete and the
variability in both age of onset and presentation of symp-
toms remained unexplained.

Comparison of the two-point LOD scores for the trans-
location and the theoretical maximum LODs across multiple
phenotypes indicated that, while the translocation event and
its disruption of the breakpoint genes explains the majority
of the linkage to SCZ, SCAFF and BD in the family,
additional variants predisposing to affective disorder and
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psychosis may be identified through linkage analyses.
Genome-wide multipoint linkage analyses identified four
genome-wide significant linkage peaks (LOD > 3.3), span-
ning 11Mb and 51 genes, and five peaks with LOD scores
> 2, spanning 35.5 Mb and 285 genes. To prioritise variants,
we combined information across linkage analyses in the t
(1;11) family, brain cis-eQTLs, and association in two UK
population-based cohorts and identified consistent, although
nominal, evidence of association between variants in
GRM5, PDE4D and CNTN5. All three genes have pre-
viously been associated with psychiatric or neurodevelop-
mental disorders (Supplementary Information: GRM5,
PDE4D and CNTN5). PDE4D is a direct protein–protein
interactor of DISC1 [54, 55], GRM5 modulates glutamatergic
signalling, and CNTN5 is a neurodevelopmental gene impli-
cated in the specification of dendritic arbors [56, 57]. In the
family, it is not possible to separate the direct effects of the
translocation and the linked loci on the derived chromosomes.
However, the identification of these variants suggests that the
family may be segregating multiple genetic hits on causal
pathways for psychiatric disorders, consistent with the poly-
genic nature of these complex traits. Studies of the effects of
disrupting DISC1 in cell and animal models show a clear effect
of the translocation on risk of psychiatric illness through this
direct effect [49]. The genetic effects of variants in the linkage
regions identified in this study will require similar validation.

Although we have highlighted these three genes, multi-
ple subregions within the linked haplotypes may contain
independent variants that, in sum, are responsible for dif-
ferent aspects of clinical presentation in the family (e.g.
MAST4 in chr5q and RAPGEF2 in chr4q; Supplementary
Figures 7 and 8). Further, we have shown that PRS derived
from PGC summary data for BD and SCZ can predict lia-
bility to psychosis in the family, suggesting a contribution
from additional common variants. Although, it is important
to note that all cases of SZ, BD and psychosis carry the
translocation, not all individuals who have the translocation
have developed psychotic illness. Our analyses suggest that
chr5q, chr2p or chr3q, may contribute in part to phenotypic
presentation (Supplementary Table 5). However, unlike
those on the derived chromosomes (the translocation, chr1q
and chr11q1), these are not present in all individuals
affected with psychotic illness (Supplementary Table 4).
These results are consistent with the association of the BD
and SCZ PRS derived from the PGC data with psychosis,
which, when fitted with translocation status, again demon-
strates association of the translocation on the background of
additional risk variants. Indeed, this study provides evi-
dence for the contribution of variants across a wide spec-
trum of allele frequencies: common (rs72953088, GRM5,
MAF= 0.06) as well as rare (rs61749255, CNTN5, MAF=
0.0014–0.0056) and the family–specific DISC1-truncating
mutation caused by the translocation.

This study is limited by the number of family members
available for study, restricting the power to detect all variants
contributing to the phenotype. However, this is counter
balanced by the advantage of reduced genetic heterogeneity
and the ability to examine multiple copies of ultra-rare var-
iants in a single pedigree. The contribution of a broad spec-
trum of allele frequencies to psychiatric disorders, as in other
complex traits, argues against the present practise of analysing
either very rare or common variants in isolation. It suggests
that emerging methods that combine both, such as those
searching for compound heterozygosity [58], may be bene-
ficial in predicting complex phenotypes and will allow us to
test the prediction that a combination of rare disruptive and
common polymorphisms explains a measurable fraction of
the individual differences in phenotype. Further, that the
separate and joint effects of potentially modulating loci and
associated genetic variants need to be assessed for biological
consequence and phenotypic impact [59, 60]. We do not rule
out the influence of differential environmental exposures on
psychiatric outcome, but our study clearly indicates that the
high density of psychiatric disorder in the t(1;11) family
involves a combination of: direct effects of the translocation
on the genes located at the breakpoint (DISC1, DISC2,
DISC1FP), the “locking together” of familial risk factors,
additional unlinked loci and common risk variants.

In conclusion, although GWAS has identified well over
100 statistically robust findings at the population level for
psychiatric disorder, a substantial proportion of variance
remains unexplained and this is more so at the individual and
family level. Family studies have identified rare, high pene-
trant variants (akin to the t(1;11), but typically large copy
number variants), which have provided valuable pointers to
biological targets. Between these two genetic mainstays,
classical linkage analysis has had less impact, reflecting the
failure to identify consistent linkage at the population level.
However, as for the complex neurological trait of Hirsch-
sprung’s Disease [61], our study suggests that an oligogenic
model best describes the spectrum of psychiatric presentations
in the t(1;11) family. We suggest the application of a com-
bined strategy justifies the linkage approach, not in a sib-pair
study design, but an extended within-family design [62]. This
strategy has the added benefit of identifying, as we have done
here with DISC1, CNTN5, PDE4D and GRM5, a subset of
variants with both statistical support and biological plausi-
bility. Our study suggests that genetic modifiers may play a
significant role in psychiatric disorders and that this is now
tractable by whole-genome sequencing in families.
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