13 research outputs found

    Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain

    Get PDF
    BACKGROUND: Cross-sectional studies suggest that the microbes in the human gut have a role in obesity by influencing thehuman body’s ability to extract and store calories. The aim of this study was to assess if there is a correlation between change inbody weight over time and gut microbiome composition.METHODS: We analysed 16S ribosomal RNA gene sequence data derived from the faecal samples of 1632 healthy females fromTwinsUK to investigate the association between gut microbiome measured cross-sectionally and longitudinal weight gain (adjustedfor caloric intake and baseline body mass index). Dietary fibre intake was investigated as a possible modifier.RESULTS: Less than half of the variation in long-term weight change was found to be heritable (h2 = 0.41 (0.31, 0.47)). Gutmicrobiota diversity was negatively associated with long-term weight gain, whereas it was positively correlated with fibre intake.Nine bacterial operational taxonomic units (OTUs) were significantly associated with weight gain after adjusting for covariates,family relatedness and multiple testing (false discovery rate o0.05). OTUs associated with lower long-term weight gain includedthose assigned to Ruminococcaceae (associated in mice with improved energy metabolism) and Lachnospiraceae. A Bacterioidesspecies OTU was associated with increased risk of weight gain but this appears to be driven by its correlation with lower levels ofdiversity.CONCLUSIONS: High gut microbiome diversity, high-fibre intake and OTUs implicated in animal models of improved energymetabolism are all correlated with lower term weight gain in humans independently of calorie intake and other confounders

    Meta-analysis of human genome-microbiome association studies: The MiBioGen consortium initiative

    Get PDF
    Background: In recent years, human microbiota, especially gut microbiota, have emerged as an important yet complex trait influencing human metabolism, immunology, and diseases. Many studies are investigating the forces underlying the observed variation, including the human genetic variants that shape human microbiota. Several preliminary genome-wide association studies (GWAS) have been completed, but more are necessary to achieve a fuller picture. Results: Here, we announce the MiBioGen consortium initiative, which has assembled 18 population-level cohorts and some 19,000 participants. Its aim is to generate new knowledge for the rapidly developing field of microbiota research. Each cohort has surveyed the gut microbiome via 16S rRNA sequencing and genotyped their participants with full-genome SNP arrays. We have standardized the analytical pipelines for both the microbiota phenotypes and genotypes, and all the data have been processed using identical approaches. Our analysis of microbiome composition shows that we can reduce the potential artifacts introduced by technical differences in generating microbiota data. We are now in the process of benchmarking the association tests and performing meta-analyses of genome-wide associations. All pipeline and summary statistics results will be shared using public data repositories. Conclusion: We present the largest consortium to date devoted to microbiota-GWAS. We have adapted our analytical pipelines to suit multi-cohort analyses and expect to gain insight into host-microbiota cross-talk at the genome-wide level. And, as an open consortium, we invite more cohorts to join us (by contacting one of the corresponding authors) and to follow the analytical pipeline we have developed

    Genome-wide association meta-analysis identifies five novel loci for age-related hearing impairment

    Get PDF
    Previous research has shown that genes play a substantial role in determining a person's susceptibility to age-related hearing impairment. The existing studies on this subject have different results, which may be caused by difficulties in determining the phenotype or the limited number of participants involved. Here, we have gathered the largest sample to date (discovery n = 9,675; replication n = 10,963; validation n = 356,141), and examined phenotypes that represented low/mid and high frequency hearing loss on the pure tone audiogram. We identified 7 loci that were either replicated and/or validated, of which 5 loci are novel in hearing. Especially the ILDR1 gene is a high profile candidate, as it contains our top SNP, is a known hearing loss gene, has been linked to age-related hearing impairment before, and in addition is preferentially expressed within hair cells of the inner ear. By verifying all previously published SNPs, we can present a paper that combines all new and existing findings to date, giving a complete overview of the genetic architecture of age-related hearing impairment. This is of importance as age-related hearing impairment is highly prevalent in our ageing society and represents a large socio-economic burden

    Distinct clinical symptom patterns in patients hospitalised with COVID-19 in an analysis of 59,011 patients in the ISARIC-4C study

    Get PDF
    COVID-19 is clinically characterised by fever, cough, and dyspnoea. Symptoms affecting other organ systems have been reported. However, it is the clinical associations of different patterns of symptoms which influence diagnostic and therapeutic decision-making. In this study, we applied clustering techniques to a large prospective cohort of hospitalised patients with COVID-19 to identify clinically meaningful sub-phenotypes. We obtained structured clinical data on 59,011 patients in the UK (the ISARIC Coronavirus Clinical Characterisation Consortium, 4C) and used a principled, unsupervised clustering approach to partition the first 25,477 cases according to symptoms reported at recruitment. We validated our findings in a second group of 33,534 cases recruited to ISARIC-4C, and in 4,445 cases recruited to a separate study of community cases. Unsupervised clustering identified distinct sub-phenotypes. First, a core symptom set of fever, cough, and dyspnoea, which co-occurred with additional symptoms in three further patterns: fatigue and confusion, diarrhoea and vomiting, or productive cough. Presentations with a single reported symptom of dyspnoea or confusion were also identified, alongside a sub-phenotype of patients reporting few or no symptoms. Patients presenting with gastrointestinal symptoms were more commonly female, had a longer duration of symptoms before presentation, and had lower 30-day mortality. Patients presenting with confusion, with or without core symptoms, were older and had a higher unadjusted mortality. Symptom sub-phenotypes were highly consistent in replication analysis within the ISARIC-4C study. Similar patterns were externally verified in patients from a study of self-reported symptoms of mild disease. The large scale of the ISARIC-4C study enabled robust, granular discovery and replication. Clinical interpretation is necessary to determine which of these observations have practical utility. We propose that four sub-phenotypes are usefully distinct from the core symptom group: gastro-intestinal disease, productive cough, confusion, and pauci-symptomatic presentations. Importantly, each is associated with an in-hospital mortality which differs from that of patients with core symptoms

    The relationship between naevus count, memory function and telomere length in the Twins UK cohort

    No full text
    The presence of a skin–brain connection whereby alterations in the skin can inform on mechanisms underlying neurodegenerative diseases is increasingly recognized. In this study, we used a discovery (n = 321) and replication (n = 147) sample from the Twins UK population to test the association between naevus count and memory function, and its mediation by telomeres. Memory function was assessed in 1999 and 2009 using the paired associates learning test (PAL), while naevus count and leucocyte telomere length (LTL, assessed by the terminal restriction fragment assay) were measured once. Higher baseline naevus count was significantly associated with fewer errors at the baseline and follow-up PAL, as well as with change in PAL score over 10 years. This association was significantly attenuated after adjustment for LTL. The significant association between naevus count and PAL score was reproduced in the replication sample. These findings suggest that melanocytes might be used as model system to study the biological ageing pathways involved in neurodegeneration. © 2018 The Authors. Pigment Cell & Melanoma Research Published by John Wiley & Sons Lt

    Host Genotype Links to Salivary and Gut Microbiota by Periodontal Status

    No full text
    Limited evidence describing how host genetic variants affect the composition of the microbiota is currently available. The aim of this study was to assess the associations between a set of candidate host genetic variants and microbial composition in both saliva and gut in the TwinsUK registry. A total of 1,746 participants were included in this study and provided stool samples. A subset of 1,018 participants also provided self-reported periodontal data, and 396 of those participants provided a saliva sample. Host DNA was extracted from whole-blood samples and processed for Infinium Global screening array, focusing on 37 selected single-nucleotide polymorphisms (SNPs) previously associated with periodontitis. The gut and salivary microbiota of participants were profiled using 16S ribosomal RNA amplicon sequencing. Associations between genotype on the selected SNPs and microbial outcomes, including α diversity, β diversity, and amplicon sequence variants (ASVs), were investigated in a multivariate mixed model. Self-reported periodontal status was also compared with microbial outcomes. Downstream analyses in gut microbiota and salivary microbiota were carried out separately. IL10 rs6667202 and VDR 2228570 SNPs were associated with salivary α diversity, and SNPs in IL10, HSA21, UHRF2, and Fc-γR genes were associated with dissimilarity matrix generated from salivary β diversity. The SNP that was associated with the greatest number of salivary ASVs was VDR 2228570 followed by IL10 rs6667202, and that of gut ASVs was NPY rs2521364. There were 77 salivary ASVs and 39 gut ASVs differentially abundant in self-reported periodontal disease versus periodontal health. The dissimilarity between saliva and gut microbiota within individuals appeared significantly greater in self-reported periodontal cases compared to periodontal health. IL10 and VDR gene variants may affect salivary microbiota composition. Periodontal status may drive variations in the salivary microbiota and possibly, to a lesser extent, in the gut microbiota

    sj-docx-1-jdr-10.1177_00220345221125402 – Supplemental material for Host Genotype Links to Salivary and Gut Microbiota by Periodontal Status

    No full text
    Supplemental material, sj-docx-1-jdr-10.1177_00220345221125402 for Host Genotype Links to Salivary and Gut Microbiota by Periodontal Status by Y. Kurushima, P.M. Wells, R.C.E. Bowyer, N. Zoheir, S. Doran, J.P. Richardson, D.D. Sprockett, D.A. Relman, C.J. Steves and L. Nibali in Journal of Dental Research</p

    Impacts of dietary exposure to pesticides on faecal microbiome metabolism in adult twins

    No full text
    Background Dietary habits have a profound influence on the metabolic activity of gut microorganisms and their influence on health. Concerns have been raised as to whether the consumption of foodstuffs contaminated with pesticides can contribute to the development of chronic disease by affecting the gut microbiome. We performed the first pesticide biomonitoring survey of the British population, and subsequently used the results to perform the first pesticide association study on gut microbiome composition and function from the TwinsUK registry. Methods Dietary exposure of 186 common insecticide, herbicide, or fungicide residues and the faecal microbiome in 65 twin pairs in the UK was investigated. We evaluated if dietary habits, geographic location, or the rural/urban environment, are associated with the excretion of pesticide residues. The composition and metabolic activity of faecal microbiota was evaluated using shotgun metagenomics and metabolomics respectively. We performed a targeted urine metabolomics analysis in order to evaluate whether pesticide urinary excretion was also associated with physiological changes. Results Pyrethroid and/or organophosphorus insecticide residues were found in all urine samples, while the herbicide glyphosate was found in 53% of individuals. Food frequency questionnaires showed that residues from organophosphates were higher with increased consumption of fruit and vegetables. A total of 34 associations between pesticide residue concentrations and faecal metabolite concentrations were detected. Glyphosate excretion was positively associated with an overall increased bacterial species richness, as well as to fatty acid metabolites and phosphate levels. The insecticide metabolite Br2CA, reflecting deltamethrin exposure, was positively associated with the phytoestrogens enterodiol and enterolactone, and negatively associated with some N-methyl amino acids. Urine metabolomics performed on a subset of samples did not reveal associations with the excretion of pesticide residues. Conclusions The consumption of conventionally grown fruit and vegetables leads to higher ingestion of pesticides with unknown long-term health consequences. Our results highlight the need for future dietary intervention studies to understand effects of pesticide exposure on the gut microbiome and possible health consequences.Molecular basis of bacterial pathogenesis, virulence factors and antibiotic resistanc
    corecore