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Gut microbiome diversity and high-fibre intake are related
to lower long-term weight gain
C Menni1, MA Jackson1, T Pallister1, CJ Steves1, TD Spector1 and AM Valdes1,2

BACKGROUND: Cross-sectional studies suggest that the microbes in the human gut have a role in obesity by influencing the
human body’s ability to extract and store calories. The aim of this study was to assess if there is a correlation between change in
body weight over time and gut microbiome composition.
METHODS: We analysed 16S ribosomal RNA gene sequence data derived from the faecal samples of 1632 healthy females from
TwinsUK to investigate the association between gut microbiome measured cross-sectionally and longitudinal weight gain (adjusted
for caloric intake and baseline body mass index). Dietary fibre intake was investigated as a possible modifier.
RESULTS: Less than half of the variation in long-term weight change was found to be heritable (h2 = 0.41 (0.31, 0.47)). Gut
microbiota diversity was negatively associated with long-term weight gain, whereas it was positively correlated with fibre intake.
Nine bacterial operational taxonomic units (OTUs) were significantly associated with weight gain after adjusting for covariates,
family relatedness and multiple testing (false discovery rate o0.05). OTUs associated with lower long-term weight gain included
those assigned to Ruminococcaceae (associated in mice with improved energy metabolism) and Lachnospiraceae. A Bacterioides
species OTU was associated with increased risk of weight gain but this appears to be driven by its correlation with lower levels of
diversity.
CONCLUSIONS: High gut microbiome diversity, high-fibre intake and OTUs implicated in animal models of improved energy
metabolism are all correlated with lower term weight gain in humans independently of calorie intake and other confounders.
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INTRODUCTION
Obesity is a growing public health problem that predisposes to
cardiovascular diseases and type 2 diabetes. It has been known for
many years that obesity has a strong hereditary component and
classical twin studies in obesity have reported heritabilities (that is,
proportion of inter-individual difference in a trait explicable by
genetic variability) on the order of 40–75%.1 On the other hand,
the biological mechanisms underpinning long-term weight gain
or loss, particularly in the context of equal caloric intake, has been
less studied. Some studies have indicated a genetic contribution
to weight gain2 and to metabolic efficiency3 over time, but also
that non-genetic factors have a significant role in weight gain.
The traditional risk factors for obesity and weight gain are

excessive caloric intake,4 low physical activity5 and low metabolic
efficiency.6 Animal studies and cross-sectional observational
studies in humans have also suggested the role of the
composition of the gut microbiome,7–11 in particular lack of
microbial diversity.8

The term microbiome describes the DNA material of microbial
communities within an animal. Humans have around 100 trillion
gut microbes that produce a wide range of enzymes, chemicals,
hormones and vitamins and potentially interact with their bodies.
Under physiological conditions, there is a balance between the
intestinal bacteria and the host. Studies have shown that
disruption of this intricate system (dysbiosis) and low species
diversity are associated with obesity.7,12,13 Germ-free mice
receiving microbiota transplanted from obese donors gained
twice as much weight than germ-free mice receiving microbiota

from lean donors.9 In humans, a recent study from our group
found that the presence of one specific bacterial species
(Christensenellaceae) is associated with lower body mass index
(BMI) and that giving this microbe to mice resulted also in lower
weight gain.14

Research has shown that the largest influence on the gut
microbiome comes from diet and the human ability to extract and
store calories from food as fat is at least partially impacted by gut
microbes.9 Gut bacteria generate short chain fatty acids by
fermentation of dietary fibre improving insulin sensitivity and fatty
acid oxidation.15 We hypothesise therefore that microbiome
diversity could be influencing the observed relation between
dietary fibre and weight gain.
There is, however, little human data on effects of weight

change. A greater understanding of alterations of the gut
microbiota, in combination with dietary patterns, may provide
insights into how the gut microbiota contributes to weight gain
and whether it can be exploited as a novel diagnostic, prognostic
and therapeutic target in addition to specific microbes, which
may be related to BMI. The aim of this study was to assess
the association of gut microbiome diversity in adults from the
TwinsUK cohort16 and change in BMI over time.

MATERIALS AND METHODS
Study population
Study subjects were twins enrolled in the TwinsUK registry, a national
register of adult twins recruited as volunteers without selecting for any
particular disease or traits.16 All recruited twins were of the same sex. We
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analysed data from 1632 females of Caucasian ancestry with BMI assessed
on average 9.09 (s.d. = 3.45) years apart, calorie intake (derived from food
frequency questionnaires (FFQs)) and physical activity at baseline and
microbiome data at follow-up.
The study was approved by NRES Committee London–Westminster, and

all twins provided informed written consent.

Assessment of weight gain–weight loss. Height and weight were measured
using standard scales twice on average 9.09 (s.d. = 3.56) years apart. BMI was
calculated by dividing weight (in kg) by the square of height (in metres). BMI
change per year was calculated adjusting for age, gender, BMI at baseline,
calorie intake (derived from FFQs) and physical activity. Physical activity was
measured by questionnaire asking their level of activity in a Likert scale
(none, light, moderate and intense). Subjects were categorised based on
these tertiles The high weight gain group was defined as the top tertile,
whereas the low weight gain as the bottom tertile.

Fibre and saturated fatty acid intake. Dietary intakes were estimated from
a validated 131-item FFQ.17 Fibre and saturated fatty acid intakes (g day–1)
were derived from the UK Nutrient Database,18 which provided food
content of non-starch polysaccharides (NSP) determined by the Englyst
method.19 Specifically, fibre and saturated fatty acid intakes were
estimated as the consumption frequency of each food multiplied by the
nutrient content of the food for the appropriate portion size. Before
analysis, fibre and saturated fatty acid intakes were adjusted for the
estimated energy intake (kilocalories).20

Microbiota analysis. A faecal sample was collected at follow-up and the
composition of the gut microbiome was determined by 16S ribosomal
RNA gene sequencing carried out as previously described.21 Briefly, the
V4 region of the 16S ribosomal RNA gene was amplified and sequenced
on Illumina MiSeq (Illumina Inc., San Diego, CA, USA). Reads were then
summarised to operational taxonomic units (OTUs). Quality control was
carried out on a per sample basis, discarding paired-ends with an overlap
of o200 nt and removing chimeric sequences using de novo chimera
detection in USEARCH.22 De novo OTU clustering was then carried across
all reads using Sumaclust within QIIME 1.9.0, grouping reads with a 97%
identity threshold.23,24 OTU counts were converted to log transformed
relative abundances, with zero counts handled by the addition of an
arbitrary value (10 − 6). The residuals of the OTU abundances were taken
from linear models, accounting for technical covariates including
sequencing depth, sequencing run, sequencing technician and sample
collection method. These residuals were inverse normalised, as they were
not normally distributed, and used in downstream analyses. In order to
calculate alpha diversity, the complete OTU count table was rarefied to
10 000 sequences per sample 50 times. Alpha diversity metrics were
calculated for each sample in each of the rarefied tables and final
diversity measures taken as the mean score across all 50. Alpha
diversities were quantified as observed OTU counts and Shannon and
Simpson diversity indices. Alpha diversity indexes were standardised to
have mean 0 and s.d. 1.

Statistical analysis. Heritability of longitudinal weight change was
estimated using the software MX25 adjusting for age, sex, smoking, calorie
intake and physical activities. We estimated heritability using structural
equation modelling to separate the observed phenotypic variance into
three latent sources of variation: additive genetic variance (A), shared/
common environmental variance (C) and non-shared/unique environ-
mental variance (E).25 Additive genetic influences are indicated when
monozygotic twins are more similar than dizygotic twins. The common
environmental component estimates the contribution of family environ-
ment, which is assumed to be equal in both monozygotic and dizygotic
twin pairs.26 The unique environmental component does not contribute to
twin similarity, rather it estimates the effects that apply only to each
individual and includes measurement error. Any greater similarity between
monozygotic twins than dizygotic twins is attributed to greater sharing of
genetic influences. Heritability is defined as the proportion of the
phenotypic variation attributable to genetic factors, and is given by the
Equation, h2= (A)/(A+C+E).
Random intercept logistic regressions were undertaken to evaluate the

ability of gut microbial diversity to predict weight gain. Covariates included
age, sex, smoking, calorie intake, physical activities, baseline BMI and familiar
relatedness. We repeated the analysis adjusting for the above covariates, as
well as for use of proton pump inhibitors and antibiotics.

Linear regressions were also undertaken to determine the association
between dietary fibre and microbial diversity adjusting for age, BMI, calorie
intake, family relatedness and multiple testing.
As we hypothesised that microbiome diversity could be influencing the

relation between dietary fibre and weight gain, we repeated the analysis
by stratifying the sample between those in the top tertile of Shannon’s
diversity (a metric that accounts for abundance and represents species
evenness) and those in the bottom tertile.
Logistic regressions were also used to investigate the association

between OTU and weight again adjusting for covariates, familiar
relatedness and multiple testing using false discovery rate.
Finally, we run partial least square discriminant analysis on OTUs to

identify the effects of weight gain and weight loss on the bacterial
community using the R package MixOmics. To avoid over-fitting, we
evaluated the performance of the model using a 10-fold cross-validation to
calculate the area under the curve of the receiver operator
characteristics curve.

RESULTS
The demographic characteristics of the study population are
presented in Table 1. Briefly, there were 3718 individuals with
longitudinal BMI data available and of those 1662 individuals
mainly females with a wide age range (20–74 years at baseline)
had microbiome data at follow-up. Heritability analysis25 (809
monozygotic pairs and 1050 dizygotic pairs) found that long-
itudinal weight change has a heritability (h2) of 0.41 (95%
confidence interval: 0.31, 0.47), meaning that 59% of the variance
in its levels is not defined by a common genetic component.
We then proceeded to investigate the contribution of gut

microbiome diversity to this phenotype.

Alpha diversity
Individuals in the weight gain group had a significantly lower
diversity (Po0.05) for the Shannon and Simpson indexes, as well
as with the observed number of species in spite of having similar
BMI at baseline (Table 2). Adjustment for use of proton pump
inhibitors and antibiotics did not affect results.
We then investigated one of the dietary factors that has been

implicated in microbiome composition, namely dietary fibre
intake.27

Dietary fibre intake is both positively correlated with measures
of microbiome diversity (Shannon: beta (s.e.) = 0.01 (0.004),
P= 0.002; Table 2) and negatively associated with risk of being in
the high weight gain group (odds ratios (OR) (s.e.) = 0.977 (0.96–
0.99), P = 0.017; Figure 1a). The association remains even after
adjusting for saturated fat intake (OR = 0.978 (0.96–0.99),
P= 0.03).
Stratifying the sample between those in the top tertile of

Shannon’s diversity and those in the bottom tertile, we found
that dietary fibre intake is associated with lower of weight gain
among individuals with high gut microbiome diversity (OR =
0.954 (0.92–0.98), P= 0.003; Figure 1c). A similar, although not
significant, effect is observed for individuals in the low gut
microbiome diversity group (OR = 0.977 (0.94–1.01), P = 0.16). The
association between dietary fibre and microbiome diversity
remained significant after adjustment for total saturated fat
intake (beta = 0.012 (0.005), P= 0.02) and similarly after adjust-
ment for protein intake (beta = 0.014 (0.0046), P= 0.002). We
found no association between total protein intake and micro-
biome diversity (beta =− 0.002 (0.002), P= 0.34).

OTU abundances that associate with longitudinal weight gain
We identified nine OTUs significantly associated with longitudinal
weight gain after adjusting for covariates and multiple testing
using false discovery rate o0.05 (Table 3).
Among the bacteria associated with lower risk of weight gain,

we found several OTUs from the order Clostridiales, in particular of
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the Ruminococcaceae family. As some of these associations may
simply reflect a correlation with microbiome diversity, we further
adjusted for Shannon’s index. We found that after adjustment for
diversity, only six OTUs remained significant, although some only
nominally, and that the relative abundance of Bacteroides is
strongly and negatively correlated with lower microbiome
diversity. We also looked for associations at higher taxomic level,
and although no significant associations remained after adjusting
for multiple testing, the family Ruminococcaceae was nominally
protective of weight gain (OR = 0.89 (0.05), P= 0.038) in line with
the OTU results.
Finally, we ran partial least square discriminant analysis to

further understand the effects of weight gain and weight loss on
the gut bacterial community. The partial least square discriminant
analysis analysis showed differences at OTU levels between
individuals in the weight gain and weight loss group as depicted
in Figure 2, the area under the curve of the receiver operator
characteristics curve is 0.57 (s.e. ± 0.008).

DISCUSSION
In the largest study to date, we have profiled the effects of gut
microbiome diversity and dietary fibre intake on longitudinal

weight gain. We showed that long-term weight gain is only in part
determined by an individual's genetic make-up and that low gut
microbiome diversity is associated with a higher weight gain over
time. Our results on longitudinal weight gain are consistent with
several studies that have provided evidence of associations
between the gut microbiome and cross-sectional measures of
body weight.7,12,13

In this study, the lack of microbiome data at baseline precludes
us from being able to assess if higher diversity is a cause or a
consequence of higher weight gain. We note two possible
interpretations for the data reported. On the one hand, the
longitudinal human data presented here is that gut microbiome
composition could contribute to weight gain independently of
calorie intake, physical activity and other potential confounders
(such as, use of proton pump inhibitors or antibiotics).28,29 An
alternative interpretation is that weight gain may be contributing
to lower bacterial diversity. This second hypothesis requires that at
a fixed level of caloric intake, the host metabolism leads to both
higher weight gain and lower diversity. However, there is
extensive evidence documenting that the microbiome composi-
tion influences energy metabolism30,31 and at the same time, to
our knowledge there are no proposed mechanisms for slower
energy metabolism in the host influencing bacterial composition.

Table 2. Association between indices of microbiome diversity and weight gain, weight loss and dietary fibre intake

Weight gain Weight loss Fibre intake (in g)

OR (s.e.) P-value OR (s.e.) P-value Beta (s.e.) P-value

Shannon 0.84 (0.05) 9.3 × 10-4 1.13 (0.07) 0.03 0.01 (0.004) 0.002
Observed OTU counts 0.85 (0.05) 0.003 1.11 (0.06) 0.1 0.02 (0.01) 0.001
Simpson 0.90 (0.06) 0.05 1.11 (0.07) 0.1 0.01 (0.003) 0.011

Abbreviations: BMI, body mass index; OR, odds ratio; OTU, operational taxonomic unit; PPI, proton pump inhibitor. Weight gain is defined as the top tertile
of the change in BMI over time adjusted for age, gender, baseline BMI, calorie intake and physical activity. Weight loss is the bottom tertile. Analysis are
adjusted for PPI and antibiotics use.

Table 1. Descriptive characteristics of the study population, overall and by tertiles of weight change

Variable Overall T1a T2 T3

n 1632 544 544 544
Women (%) 98.41% 98.90% 98.35% 97.98%
Age at baseline, years 49.76 (8.85) 49.91 (9.49) 50.11 (8.54) 49.25 (8.48)
Age at follow-up, years 58.85 (9.17) 58.03 (9.43) 60.28 (8.79) 58.23 (9.14)
years of follow-up, years 9.09 (3.56) 8·12 (3.83) 10.16 (3·03) 8.98 (3.49)
BMI at baseline, kg m–2 24.95 (4.17) 25.40 (4.72) 24.02 (3.42) 25.41 (4.13)
BMI at follow-up, kg m–2 26.16 (4.58) 24.44 (4.34) 25.24 (3.37) 28.81 (4.69)
BMI change per year, kg m–2 0.11 (0.31) − 0.17 (0.26) 0.11 (0.06) 0.39 (0.22)
Fibre intake, g day–1 20.4 (6.79) 21.10 (6.98) 20.33 (6.75) 20.02 (6.62)
Kcal intake at baseline 1994.86 (519.32) 2030.46 (526.35) 2015.66 (536.93) 1927.63 (481.66)
Kcal intake at follow-up 1822.56 (528.19) 1858.63 (545.76) 1827.53 (529.07) 1770.76 (500.94)
Protein intake, g day–1 80.06 (22.88) 81.02 (24.71) 80.03 (22.54) 79.14 (21.25)
Physical activity low, % 16.63% 19.36% 14.56% 16.28%
Saturated fat intake, g day–1 26.05 (10.25) 26.70 (10.49) 26.30 (10.76) 24.98 (9.18)
Smoking (no:ex:yes) 1019:505:108 353:155:36 339:172:33 327:179:39
Use of PPIs 14.15% 13.05% 14.15% 15.26%

Indices of microbiome α-diversityb

Shannon 5.16 (0.72) 5.21 (0.73) 5.19 (0.73) 5.07 (0.71)
Simpson 0.92 (0.06) 0.93 (0.06) 0.92 (0.06) 0.92 (0.06)
Observed OTU counts 342.12 (97.45) 346.25 (95.70) 348.31 (102.93) 331.79 (93.78)

Mean (s.d.) reported unless indicated otherwise. Abbreviations: BMI, body mass index; OTU, operational taxonomic unit; PPI, proton pump inhibitor; rRNA,
ribosomal RNA. aT1, T2 and T3 represent, respectively, the first, second and third tertile of change in BMI over time adjusted for age, gender, baseline BMI,
calorie intake and physical activity. T3 represents weight gain, whereas T1 represents weight loss. bThe 16S rRNA sequencing data had been summarised to
operational taxonomic units (OTUs).4 This table was rarefied to a depth of 10 000 OTUs per sample and three measures of gut microbiome alpha diversity were
computed: Shannon, Simpson and observed OTU counts.
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If lower bacterial diversity was indeed directly linked to lower
weight gain, this would be in agreement with what has been
found in murine models regarding the effect of the gut microbiota
on energy metabolism in the host31 and would suggest that gut
microbes may be viewed as ‘novel’ future therapeutic target to
treat obesity.
We report that microbiome diversity could be influencing the

observed relation between dietary fibre and weight gain. When

we stratified the sample between those in the top tertile of
Shannon’s diversity and those in the bottom tertile, we found that
fibre intake is significantly associated with a decreased risk of
being in the high weight gain group among individuals in the
high microbiome diversity group but not in those with low
microbiome diversity.
We also identified nine OTUs to be significantly associated with

weight gain. Adjusting for proton pump inhibitor and antibiotics

Figure 1. Box plot showing the relationship between dietary fibre intake and weight gain/weight loss (a) overall, (b) in individuals in the
bottom tertile of Shannon’s diversity index and (c) in the top tertile of Shannon’s diversity index. The ORs for association with weight gain per
gram per day of fibre intake are also shown.

Table 3. OTUs of the gut microbiome associated with long-term weight gain (ORwtgn) showing the nominal association (P) adjusted for age, sex,
smoking, calorie intake, physical activity and family relatedness and the FDR P-value (Q)

OTU (taxonomic assignment) ORwtgn s.e. P-value Q aORwtgn as.e. aP-value Beta Shannon s.e. P-value

Firmicutes; c_Clostridia; o_Clostridiales;
f_Ruminococcaceae; g_; s_

0.79 0.05 5.8 × 10− 5 0.03 0.87 0.05 0.018 0.48 0.02 1.9 × 10− 81

Firmicutes; c_Clostridia; o_Clostridiales;
f_; g_; s_

0.81 0.05 1.8 × 10− 4 0.04 0.86 0.05 0.010 0.43 0.02 1.8 × 10− 75

Firmicutes; c_Clostridia; o_Clostridiales;
f_Ruminococcaceae; g_; s_

0.82 0.04 2.1 × 10− 4 0.03 0.84 0.05 0.003 0.28 0.02 1.7 × 10− 36

Firmicutes; c_Clostridia; o_Clostridiales;
f_Ruminococcaceae; g_; s_

0.82 0.04 2.4 × 10− 4 0.03 0.84 0.05 0.001 0.34 0.02 2.5 × 10− 44

Firmicutes; c_Clostridia; o_Clostridiales;
f_Ruminococcaceae; g_; s_

0.81 0.05 2.9 × 10− 4 0.02 0.91 0.06 0.111 0.50 0.02 5.2 × 10− 85

Bacteroidetes; c_Bacteroidia; o_Bacteroidales;
f_Rikenellaceae; g_; s_

0.82 0.05 3.9 × 10− 4 0.03 0.91 0.05 0.097 0.33 0.03 1.0 × 10− 32

Bacteroidetes; c_Bacteroidia; o_Bacteroidales;
f_Bacteroidaceae; g_Bacteroides; s_

1.22 0.07 4.3 × 10− 4 0.03 1.18 0.06 0.002 − 0.14 0.02 4.1 × 10− 9

Firmicutes; c_Clostridia; o_Clostridiales;
f_Ruminococcaceae; g_Oscillospira; s_

0.82 0.05 4.6 × 10− 4 0.02 0.89 0.05 0.032 0.37 0.02 3.6 × 10− 49

Firmicutes; c_Clostridia; o_Clostridiales;
f_Lachnospiraceae; g_Lachnospira; s_

0.82 0.05 4.7 × 10− 4 0.02 0.89 0.05 0.052 0.37 0.03 2.3 × 10−43

Abbreviations: FDR, false discovery rate; OR, odds ratio; OTU, operational taxonomic unit. The association was then further adjusted for Shannon’s
diversity index (aORwtgn). The association between the OTUs relative abundance and Shannon’s diversity index (beta Shannon, s.e. and P-value from linear
regression).
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did not change the results. Conflicting evidence exists regarding
phylogenetic signatures in obese human guts, with many studies
indicating and increased ratio of Firmicutes: Bacteoridates,13,32–34

some showing no trend and some showing the opposite
trend.35–37 Here we found that among the eight OTUs that are
significantly associated with lower risk of weight gain, seven
belong to the Firmicutes family, many of them part of the
Ruminococcaceae. The suggestion that this ratio may not be
particularly informative regarding the role of the microbiome in
determining body weight had already been put forward by
others.38

The association between some Ruminococcaceae and lower
risk of weight gain and Bacteroides and higher risk of weight gain
may be simply because of their (respectively) positive and
negative correlations with microbiome diversity, although in two
instances the OTUs remain associated even after adjustment for
diversity.
In mice, the gut microbiota is altered during suppression of

obesity in a cold environment. Ruminococcaceae Adlercreutzia and
Desulfovibrio39 are among the bacteria that increase during this
process. Thus, it is possible that Ruminococcaceae may be
functionally linked to a lean phenotype but further functional
studies are needed to assess if this is the case.
A small interventional study in 33 obese individuals identified

significant microbiome changes, including a decrease in
Faecalibacterium prausnitzii, under weight loss in 4 months.40

In our data, however, we find no significant association of
Faecalibacterium prausnitzii with longitudinal weight change,
although we find that Faecalibacterium prausnitzii correlates
cross-sectionally with lower BMI (beta (s.e.) = − 0.54 (0.11),
P= 1.4 × 10 − 6) consistent with an association between the
abundance of this species in the gut and obesity. We note that
we studied a normal population and not an obese group and
that this study had a larger study sample and considerably
longer follow-up time. However, this suggests that changes in
the microbiome in response to weight loss over a short period of
time (that is, 4 months) may not reflect differences in
microbiome composition associated with lower risk of weight
gain over a period of many years.
Not only is weight gain in large part because of non-genetic

factors,1 but an individual’s gut microbiome diversity is only in
part determined by the hosts' genetic make-up. The heritability of

gut microbiome diversity has been estimated to range from 0.30
to 0.37,21 which means that over 60% of the variation in
microbiome diversity is environmentally determined and under-
standing how to increase microbiome diversity should be a focus
of future research.
Our results also suggest that the beneficial effect of fibre on

weight may be more pronounced in individuals with higher
microbiome diversity, although this may reflect at least in part
the fact that individuals, which higher fibre have a greater
microbiome diversity.41 The healthy effects of a diverse gut
microbiome on several phenotypes have already been demon-
strated in humans in various settings.42 Experimental work in
animals has shown that fibre intake reduces the energy density
of diet, and the resulting short chain fatty acids promote
intestinal gluconeogenesis, incretin formation and subsequently
satiety, whereas at the same time short chain fatty acids also
deliver energy to the host and support liponeogenesis.43 Our
data suggest that increasing microbiome diversity may be itself a
desirable outcome and that an effect of fibre intake on reduced
weight gain is seen more strongly in individuals with higher
microbiome diversity.
We note several study limitations, the major one being the

lack of measures of microbiome composition at baseline that
would enable us to assess the predictive value of diversity with
regards to weight gain. Smaller studies, however, have already
shown that gut microbiome composition influence weight gain,
for example, in children (n= 25)44 and in individuals taking
specific antibiotics (n= 102)45 and hence our results are not only
consistent but help better document, which OTUs are involved.
Another limitation is that the population under study consists of
women and there may be gender differences with regards to the
role of the microbiome on weight gain. However, this is to our
knowledge the largest study to date and the first to explore the
association with weight gain over time and not just the
association with obesity and leanness. Another limitation of
our study is the type of dietary data available from FFQs, which
being recall data are subject to some bias. For example, the lack
of a significant association between protein intake and micro-
biome diversity may reflect the limits of FFQ recall data
compared with those of carefully controlled dietary intervention
studies, hence we cannot exclude the importance of protein

Figure 2. (a) Partial least square discriminant analysis score plot based on the relative abundances of OTU in the gut microbiota and their
association with weight gain and weight loss. (b) Partial least square discriminant analysis loading plot based on the relative abundances of
OTU in the gut microbiota and their association with weight gain and weight loss. The OTU with variable influence on projection (VIP) 41 are
shown and coloured according to their corresponding family.
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intake either on weight gain or on the microbiome from these
data.46

We also note that the measure of fibre used here referred only
to total NSP as the more comprehensive measure was not
available. According to the British Nutrition Foundation in the UK,
the average intake of NSP is 12.8 g day–1 for women and
14.8 g day–1 with a recommended average intake for adults is
18 g (NSP) per day.47 In our data, the average dietary intake is 20 g
NSP per day, which is therefore above the national average and in
line with the British National Formulary recommendation.
In conclusion, this study is the first to correlate gut microbiome

composition and diversity to long-term (intended as several years)
weight change adjusting for calorie intake. It is also one of the largest
studies to date linking obesity to the microbiome in humans. Our
data are in agreement with other studies that support a role for the
gut microbiome composition in the regulation of human body
weight, which is to a large extent environmentally determined and
independent of caloric intake. As the gut microbiome is modifiable,
we believe these results should increase interest in targeting the
microbiome for weight control interventions and should encourage
research into longitudinal changes in the microbiome in sufficiently
powered studies.
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