15 research outputs found

    An Interactive Database for the Assessment of Histone Antibody Specificity

    Get PDF
    Access to high quality antibodies is a necessity for the study of histones and their posttranslational modifications (PTMs). Here we debut The Histone Antibody Specificity Database (http://www.histoneantibodies.com), an online and expanding resource cataloguing the behavior of widely used commercially available histone antibodies by peptide microarray. This interactive web portal provides a critical resource to the biological research community who routinely use these antibodies as detection reagents for a wide range of applications

    Foxp3 Exploits a Pre-Existent Enhancer Landscape for Regulatory T Cell Lineage Specification

    Get PDF
    SummaryRegulatory T (Treg) cells, whose identity and function are defined by the transcription factor Foxp3, are indispensable for immune homeostasis. It is unclear whether Foxp3 exerts its Treg lineage specification function through active modification of the chromatin landscape and establishment of new enhancers or by exploiting a pre-existing enhancer landscape. Analysis of the chromatin accessibility of Foxp3-bound enhancers in Treg and Foxp3-negative T cells showed that Foxp3 was bound overwhelmingly to preaccessible enhancers occupied by its cofactors in precursor cells or a structurally related predecessor. Furthermore, the bulk of Foxp3-bound Treg cell enhancers lacking in Foxp3− CD4+ cells became accessible upon T cell receptor activation prior to Foxp3 expression, and only a small subset associated with several functionally important genes were exclusively Treg cell specific. Thus, in a late cellular differentiation process, Foxp3 defines Treg cell functionality in an “opportunistic” manner by largely exploiting the preformed enhancer network instead of establishing a new enhancer landscape

    Chromatin Kinases Act on Transcription Factors and Histone Tails in Regulation of Inducible Transcription

    No full text
    The inflammatory response requires coordinated activation of both transcription factors and chromatin to induce transcription for defense against pathogens and environmental insults. We sought to elucidate the connections between inflammatory signaling pathways and chromatin through genomic footprinting of kinase activity and unbiased identification of prominent histone phosphorylation events. We identified H3 serine 28 phosphorylation (H3S28ph) as the principal stimulation-dependent histone modification and observed its enrichment at induced genes in mouse macrophages stimulated with bacterial lipopolysaccharide. Using pharmacological and genetic approaches, we identified mitogen- and stress-activated protein kinases (MSKs) as primary mediators of H3S28ph in macrophages. Cell-free transcription assays demonstrated that H3S28ph directly promotes p300/CBP-dependent transcription. Further, MSKs can activate both signal-responsive transcription factors and the chromatin template with additive effects on transcription. Specific inhibition of MSKs in macrophages selectively reduced transcription of stimulation-induced genes. Our results suggest that MSKs incorporate upstream signaling inputs and control multiple downstream regulators of inducible transcription
    corecore