9 research outputs found

    Experimental research on the effects of water application on greenhouse gas emissions from beef cattle feedlots

    Get PDF
    The effect of water application (e.g., through rainfall or sprinkler system) on emissions of greenhouse gases (GHGs), such as nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2), from pen surfaces of open-lot beef cattle feedlots was evaluated under controlled laboratory conditions. Soil/manure samples were collected from several randomly selected pens from two beef cattle feedlots in Kansas and were used as simulated pen surfaces. Three treatments (i.e., dry and loose, moist and loose, and moist and compacted pen surface conditions) were considered, simulating surface conditions in the field after a typical rainfall event or water application with a sprinkler system. Soil/manure and water were mixed within glass containers and analyzed for GHG emission using a photo-acoustic infrared multi-gas analyzer; emission rates were calculated from measured concentrations. GHG emissions from the dry soil/manure samples were low, with mean values of 0.02, 0.00, and 45 mg m−2 h−1 for N2O, CH4, and CO2, respectively, compared to moist soil/manure samples. Water application on the dry manure samples resulted in large peaks of GHG fluxes, with peak values of 99.2, 28.6, and 15,443 mg m−2 h−1 for N2O, CH4, and CO2, respectively.The effect of water application (e.g., through rainfall or sprinkler system) on emissions of greenhouse gases (GHGs), such as nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2), from pen surfaces of open-lot beef cattle feedlots was evaluated under controlled laboratory conditions. Soil/manure samples were collected from several randomly selected pens from two beef cattle feedlots in Kansas and were used as simulated pen surfaces. Three treatments (i.e., dry and loose, moist and loose, and moist and compacted pen surface conditions) were considered, simulating surface conditions in the field after a typical rainfall event or water application with a sprinkler system. Soil/manure and water were mixed within glass containers and analyzed for GHG emission using a photo-acoustic infrared multi-gas analyzer; emission rates were calculated from measured concentrations. GHG emissions from the dry soil/manure samples were low, with mean values of 0.02, 0.00, and 45 mg m−2 h−1 for N2O, CH4, and CO2, respectively, compared to moist soil/manure samples. Water application on the dry manure samples resulted in large peaks of GHG fluxes, with peak values of 99.2, 28.6, and 15,443 mg m−2 h−1 for N2O, CH4, and CO2, respectively

    Microbial Community and Chemical Characteristics of Swine Manure during Maturation

    Get PDF
    Swine diet formulations have the potential to lower animal emissions, including odor and ammonia (NH3). The purpose of this study was to determine the impact of manure storage duration on manure chemical and microbial properties in swine feeding trials. Three groups of 12 pigs were fed a standard corn–soybean meal diet over a 13-wk period. Urine and feces were collected at each feeding and transferred to 12 manure storage tanks. Manure chemical characteristics and headspace gas concentrations were monitored for NH3, hydrogen sulfide (H2S), volatile fatty acids, phenols, and indoles. Microbial analysis of the stored manure included plate counts, community structure (denaturing gradient gel electrophoresis), and metabolic function (Biolog). All odorants in manure and headspace gas concentrations were significantly (p \u3c 0.01) correlated for length of storage using quadratic equations, peaking after Week 5 for all headspace gases and most manure chemical characteristics. Microbial community structure and metabolic utilization patterns showed continued change throughout the 13-wk trial. Denaturing gradient gel electrophoresis species diversity patterns declined significantly (p \u3c 0.01) with time as substrate utilization declined for sugars and certain amino acids, but functionality increased in the utilization of short chain fatty acids as levels of these compounds increased in manure. Studies to assess the effect of swine diet formulations on manure emissions for odor need to be conducted for a minimum of 5 wk. Efforts to determine the impact of diets on greenhouse gas emissions will require longer periods of study (\u3e13 wk)

    Alcohol, Volatile Fatty Acid, Phenol, and Methane Emissions from Dairy Cows and Fresh Manure

    Get PDF
    There are approximately 2.5 million dairy cows in California. Emission inventories list dairy cows and their manure as the major source of regional air pollutants, but data on their actual emissions remain sparse, particularly for smog-forming volatile organic compounds (VOCs) and greenhouse gases (GHGs). We report measurements of alcohols, volatile fatty acids, phenols, and methane (CH4) emitted from nonlactating (dry) and lactating dairy cows and their manure under controlled conditions. The experiment was conducted in an environmental chamber that simulates commercial concrete-floored freestall cow housing conditions. The fluxes of methanol, ethanol, and CH4 were measured from cows and/or their fresh manure. The average estimated methanol and ethanol emissions were 0.33 and 0.51 g cow−1 h−1 from dry cows and manure and 0.7 and 1.27 g cow−1 h−1 from lactating cows and manure, respectively. Both alcohols increased over time, coinciding with increasing accumulation of manure on the chamber floor. Volatile fatty acids and phenols were emitted at concentrations close to their detection limit. Average estimated CH4emissions were predominantly associated with enteric fermentation from cows rather than manure and were 12.35 and 18.23 g cow−1 h−1 for dry and lactating cows, respectively. Lactating cows produced considerably more gaseous VOCs and GHGs emissions than dry cows (P \u3c 0.001). Dairy cows and fresh manure have the potential to emit considerable amounts of alcohols and CH4 and research is needed to determine effective mitigation

    Laboratory evaluation of surface amendments for controlling greenhouse gas emissions from beef cattle feedlots

    Get PDF
    Pen surface amendments for mitigating emissions of greenhouse gases (GHGs), such as nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2), from beef cattle feedlots, were evaluated under controlled laboratory conditions. Amendments were organic residues (i.e., sorghum straw, prairie grass, woodchip), biochar from those organic residues and from beef cattle manure, and activated carbon. Manure samples were collected from several randomly selected pens from two beef cattle feedlots in Kansas and used in the experiments, either as dry (0.10 g · gˉ¹ wet basis water content) or moist (0.35 g · gˉ¹ wet basis). For each amendment, four different treatment levels (i.e., amounts of material) were placed on top of manure samples in glass containers and analyzed for GHG emissions using a photo-acoustic infrared multi-gas analyzer. From measured concentrations, emission rates were determined. For the dry manure conditions, all amendment materials showed significant reduction of N2O and CO2 emissions compared to the control (i.e., no amendment). For the moist manure conditions, none of the amendments showed significant effects on GHG emissions during the first 8 days; at days 10 and 15 after application, however, the biochar materials performed significantly better than the control (i.e., no surface amendment) in reducing N2O and CH4 emissions. No significant difference was observed in GHG emissions when the amendments were placed on top or mixed within the top surface layer of the manure

    Three-Phase Foam Analysis and the Development of a Lab-Scale Foaming Capacity and Stability Test for Swine Manures

    No full text
    Part of the Agriculture Commons, and the Bioresource and Agricultural Engineering Commons The complete bibliographic information for this item can be found a

    Influence of Functionalized Pyridine Ligands on the Radio/Chemical Behavior of [M<sup>I</sup>(CO)<sub>3</sub>]<sup>+</sup> (M = Re and <sup>99m</sup>Tc) 2 + 1 Complexes

    No full text
    While a number of chelate strategies have been developed for the organometallic precursor <i>fac</i>-[M<sup>I</sup>(OH<sub>2</sub>)<sub>3</sub>(CO)<sub>3</sub>]<sup>+</sup> (M = Re, <sup>99m</sup>Tc), a unique challenge has been to improve the overall function and performance of these complexes for in vivo and in vitro applications. Since its discovery, <i>fac</i>-[M<sup>I</sup>(OH<sub>2</sub>)<sub>3</sub>(CO)<sub>3</sub>]<sup>+</sup> has served as an essential scaffold for the development of new targeted <sup>99m</sup>Tc based radiopharmaceuticals due to its labile aquo ligands. However, the lipophilic nature of the <i>fac</i>-[M<sup>I</sup>(CO)<sub>3</sub>]<sup>+</sup> core can influence the in vivo pharmacokinetics and biodistribution of the complexes. In an effort to understand and improve this behavior, monosubstituted pyridine ligands were used to assess the impact of donor nitrogen basicity on binding strength and stability of <i>fac</i>-[M<sup>I</sup>(CO)<sub>3</sub>]<sup>+</sup> in a 2 + 1 labeling strategy. A series of Re and <sup>99m</sup>Tc complexes were synthesized with picolinic acid as a bidentate ligand and 4-substituted pyridine ligands. These complexes were designed to probe the effect of p<i>K</i><sub>a</sub> from the monodentate pyridine ligand both at the macro scale and radiochemical concentrations. Comparison of X-ray structural data and radiochemical solution experiments clearly indicate an increase in overall yield and stability as pyridine basicity increased
    corecore