60 research outputs found

    Ropeless fishing to prevent large whale entanglements: Ropeless Consortium report

    Get PDF
    The 2017 North Atlantic right whale (NARW) unusual mortality event and an increase in humpback whale entanglements off the U.S. West Coast have driven significant interest in ropeless trap/pot fishing. Removing the vertical buoy lines used to mark traps on the sea floor and haul them up would dramatically reduce or eliminate entanglements, the leading cause of NARW mortality, while potentially allowing fishermen to harvest in areas that would otherwise need to be closed to protect whales. At the first annual Ropeless Consortium meeting, researchers, fishing industry representatives, manufacturers, conservationists, and regulators discussed existing and developing technological replacements for the marking and retrieval functions of buoy lines. Fishermen and NGO partners shared their experience demonstrating ropeless systems and provided feedback to improve the designs. U.S. and Canadian federal regulators discussed prospects to use ropeless fishing gear in areas closed to fishing with vertical lines, as well as other options to reduce entanglements, and a Massachusetts official shared additional regulatory considerations involved in ropeless fishing in state waters. Sustainable seafood experts discussed consumer market advantages and endangered, threatened, and protected species impacts in sustainability standards and certifications. Moving forward, there is an immediate need to (1) work with industry partners to iteratively test and improve ropeless retrieval and marking systems to adapt them to the specific conditions of the relevant trap/pot fisheries, (2) create data sharing and communications protocols for ropeless gear location marking, and (3) develop regulatory procedures and enforcement capacity to allow legal ropeless gear use.This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.2020-06-2

    Current and Future Patterns of Global Marine Mammal Biodiversity

    Get PDF
    Quantifying the spatial distribution of taxa is an important prerequisite for the preservation of biodiversity, and can provide a baseline against which to measure the impacts of climate change. Here we analyse patterns of marine mammal species richness based on predictions of global distributional ranges for 115 species, including all extant pinnipeds and cetaceans. We used an environmental suitability model specifically designed to address the paucity of distributional data for many marine mammal species. We generated richness patterns by overlaying predicted distributions for all species; these were then validated against sightings data from dedicated long-term surveys in the Eastern Tropical Pacific, the Northeast Atlantic and the Southern Ocean. Model outputs correlated well with empirically observed patterns of biodiversity in all three survey regions. Marine mammal richness was predicted to be highest in temperate waters of both hemispheres with distinct hotspots around New Zealand, Japan, Baja California, the Galapagos Islands, the Southeast Pacific, and the Southern Ocean. We then applied our model to explore potential changes in biodiversity under future perturbations of environmental conditions. Forward projections of biodiversity using an intermediate Intergovernmental Panel for Climate Change (IPCC) temperature scenario predicted that projected ocean warming and changes in sea ice cover until 2050 may have moderate effects on the spatial patterns of marine mammal richness. Increases in cetacean richness were predicted above 40° latitude in both hemispheres, while decreases in both pinniped and cetacean richness were expected at lower latitudes. Our results show how species distribution models can be applied to explore broad patterns of marine biodiversity worldwide for taxa for which limited distributional data are available

    Segregation of migration by feeding ground origin in North Atlantic humpback whales (\u3ci\u3eMegaptera novaeangliae\u3c/i\u3e)

    Get PDF
    Results from a large-scale, capture–recapture study of humpback whales Megaptera novaeangliae in the North Atlantic show that migration timing is influenced by feeding ground origin. No significant differences were observed in the number of individuals from any feeding area that were re-sighted in the common breeding area in the West Indies. However, there was a relationship between the proportion (logit transformed) of West Indies sightings and longitude (r2 = 0.97, F1,3 = 98.27, P = 0.0022) suggesting that individuals feeding farther to the east are less likely to winter in the West Indies. A relationship was also detected between sighting date in the West Indies and feeding area. Mean sighting dates in the West Indies for individuals identified in the Gulf of Maine and eastern Canada were significantly earlier than those for animals identified in Greenland, Iceland and Norway (9.97 days, t179 = 3.53, P = 0.00054). There was also evidence for sexual segregation in migration; males were seen earlier on the breeding ground than were females (6.63 days, t105 = 1.98, P = 0.050). This pattern was consistently observed for animals from all feeding areas; a combined model showed a significant effect for both sex (F1 = 5.942, P = 0.017) and feeding area (F3 =4.756, P=0.0038). The temporal difference in occupancy of the West Indies between individuals from different feeding areas, coupled with sexual differences in migratory patterns, presents the possibility that there are reduced mating opportunities between individuals from different high latitude areas

    North Atlantic humpback whale abundance and rate of increase four decades after protection from whaling

    Get PDF
    Humpback whales Megaptera novaeangliae in the North Atlantic Ocean were severely depleted by exploitation. With legal protection since 1955, substantial recovery is likely to have occurred, but information on abundance and rates of increase has been limited. We present an assessment of humpback whale abundance in the North Atlantic Ocean based upon capturerecapture estimates using naturally marked individuals. These data result from a long-term collaborative effort combining large-scale dedicated projects and incidental data collection, leading to extensive geographical coverage. The application of robust statistical techniques produces estimates of greater accuracy and precision than has previously been possible. Abundance estimates ranging from 5930 to 12 580 individuals, with coefficients of variation (CVs) from 0.07 to 0.39, were calculated for the West Indies breeding population using data from 1979 to 1993. The most precise estimate for the West Indies breeding population is 10 752 (CV = 0.068) for 1992 and 1993. Due to application of new analytical methods, these estimates are larger and more precise than those previously published from similar time periods. The average rate of increase for the West Indies breeding population over a 14 yr period was estimated to be 0.031 (SE = 0.005). The best available estimate for the entire North Atlantic population of humpback whales is 11 570 (95% CI 10 290 to 13 390) based upon samples from 1992 and 1993. However, this estimate may be biased downwards to an unknown extent due to heterogeneity in capture probabilities that do not influence the West Indies estimates

    An Index to Assess the Health and Benefits of the Global Ocean

    Get PDF
    The ocean plays a critical role in supporting human well-being, from providing food, livelihoods and recreational opportunities to regulating the global climate. Sustainable management aimed at maintaining the flow of a broad range of benefits from the ocean requires a comprehensive and quantitative method to measure and monitor the health of coupled human–ocean systems. We created an index comprising ten diverse public goals for a healthy coupled human–ocean system and calculated the index for every coastal country. Globally, the overall index score was 60 out of 100 (range 36–86), with developed countries generally performing better than developing countries, but with notable exceptions. Only 5% of countries scored higher than 70, whereas 32% scored lower than 50. The index provides a powerful tool to raise public awareness, direct resource management, improve policy and prioritize scientific research

    Assessing Global Marine Biodiversity Status within a Coupled Socio-Ecological Perspective

    Get PDF
    <div><p>People value the existence of a variety of marine species and habitats, many of which are negatively impacted by human activities. The Convention on Biological Diversity and other international and national policy agreements have set broad goals for reducing the rate of biodiversity loss. However, efforts to conserve biodiversity cannot be effective without comprehensive metrics both to assess progress towards meeting conservation goals and to account for measures that reduce pressures so that positive actions are encouraged. We developed an index based on a global assessment of the condition of marine biodiversity using publically available data to estimate the condition of species and habitats within 151 coastal countries. Our assessment also included data on social and ecological pressures on biodiversity as well as variables that indicate whether good governance is in place to reduce them. Thus, our index is a social as well as ecological measure of the current and likely future status of biodiversity. As part of our analyses, we set explicit reference points or targets that provide benchmarks for success and allow for comparative assessment of current conditions. Overall country-level scores ranged from 43 to 95 on a scale of 1 to 100, but countries that scored high for species did not necessarily score high for habitats. Although most current status scores were relatively high, likely future status scores for biodiversity were much lower in most countries due to negative trends for both species and habitats. We also found a strong positive relationship between the Human Development Index and resilience measures that could promote greater sustainability by reducing pressures. This relationship suggests that many developing countries lack effective governance, further jeopardizing their ability to maintain species and habitats in the future.</p> </div

    Assessing the Health of the U.S. West Coast with a Regional-Scale Application of the Ocean Health Index

    Get PDF
    <div><p>Management of marine ecosystems increasingly demands comprehensive and quantitative assessments of ocean health, but lacks a tool to do so. We applied the recently developed Ocean Health Index to assess ocean health in the relatively data-rich US west coast region. The overall region scored 71 out of 100, with sub-regions scoring from 65 (Washington) to 74 (Oregon). Highest scoring goals included tourism and recreation (99) and clean waters (87), while the lowest scoring goals were sense of place (48) and artisanal fishing opportunities (57). Surprisingly, even in this well-studied area data limitations precluded robust assessments of past trends in overall ocean health. Nonetheless, retrospective calculation of current status showed that many goals have declined, by up to 20%. In contrast, near-term future scores were on average 6% greater than current status across all goals and sub-regions. Application of hypothetical but realistic management scenarios illustrate how the Index can be used to predict and understand the tradeoffs among goals and consequences for overall ocean health. We illustrate and discuss how this index can be used to vet underlying assumptions and decisions with local stakeholders and decision-makers so that scores reflect regional knowledge, priorities and values. We also highlight the importance of ongoing and future monitoring that will provide robust data relevant to ocean health assessment.</p></div
    • …
    corecore