451 research outputs found

    Evidence for the regulation of luteinizing hormone-sensitive adenylate cyclase by mono- and divalent cations

    Get PDF

    CancerNet: a unified deep learning network for pan‑cancer diagnostics

    Get PDF
    Article states that despite remarkable advances in cancer research, cancer remains one of the leading causes of death worldwide. The author's proposed framework for cancer diagnostics detects cancers and their tissues of origin using a unified model of cancers encompassing 33 cancers represented in The Cancer Genome Atlas. Their model exploits the learned features of different cancers reflected in the respective dysregulated epigenomes, holding a great promise in early cancer detection

    Multiple RNA-binding proteins function combinatorially to control the soma-restricted expression pattern of the E3 ligase subunit ZIF-1

    Get PDF
    AbstractIn C. elegans embryos, transcriptional repression in germline blastomeres requires PIE-1 protein. Germline blastomere-specific localization of PIE-1 depends, in part, upon regulated degradation of PIE-1 in somatic cells. We and others have shown that the temporal and spatial regulation of PIE-1 degradation is controlled by translation of the substrate-binding subunit, ZIF-1, of an E3 ligase. We now show that ZIF-1 expression in embryos is regulated by five maternally-supplied RNA-binding proteins. POS-1, MEX-3, and SPN-4 function as repressors of ZIF-1 expression, whereas MEX-5 and MEX-6 antagonize this repression. All five proteins bind directly to the zif-1 3′ UTR in vitro. We show that, in vivo, POS-1 and MEX-5/6 have antagonistic roles in ZIF-1 expression. In vitro, they bind to a common region of the zif-1 3′ UTR, with MEX-5 binding impeding that by POS-1. The region of the zif-1 3′ UTR bound by MEX-5/6 also partially overlaps with that bound by MEX-3, consistent with their antagonistic functions on ZIF-1 expression in vivo. Whereas both MEX-3 and SPN-4 repress ZIF-1 expression, neither protein alone appears to be sufficient, suggesting that they function together in ZIF-1 repression. We propose that MEX-3 and SPN-4 repress ZIF-1 expression exclusively in 1- and 2-cell embryos, the only period during embryogenesis when these two proteins co-localize. As the embryo divides, ZIF-1 continues to be repressed in germline blastomeres by POS-1, a germline blastomere-specific protein. MEX-5/6 antagonize repression by POS-1 and MEX-3, enabling ZIF-1 expression in somatic blastomeres. We propose that ZIF-1 expression results from a net summation of complex positive and negative translational regulation by 3′ UTR-binding proteins, with expression in a specific blastomere dependent upon the precise combination of these proteins in that cell

    Key Data Elements in Myeloid Leukemia

    Get PDF
    Data standards consisting of key data elements for clinical routine and trial documentation harmonize documentation within and across different health care institutions making documentation more efficient and improving scientific data analysis. This work focusses on the field of myeloid leukemia (ML), where a semantic core of common data elements (CDEs) in routine and trial documentation is established by automatic UMLS-based form analysis of existing documentation models. These CDEs (n=227) were initially reviewed and commented by leukemia experts before they were systematically surveyed by an international voting process through seven hematologists of four countries. The total agreement score was 86%. 116 elements (51%) of these share an agreement score of 100%. This work generated CDEs with language-independent semantic codes and international clinical expert review to build a first approach towards an international data standard for ML. A first version of the CDE list is implemented in the data standard Operational Data Model and additional other data formats for reuse in different medical information systems

    The Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of acute leukemia.

    Get PDF
    Acute leukemia is a constellation of rapidly progressing diseases that affect a wide range of patients regardless of age or gender. Traditional treatment options for patients with acute leukemia include chemotherapy and hematopoietic cell transplantation. The advent of cancer immunotherapy has had a significant impact on acute leukemia treatment. Novel immunotherapeutic agents including antibody-drug conjugates, bispecific T cell engagers, and chimeric antigen receptor T cell therapies have efficacy and have recently been approved by the US Food and Drug Administration (FDA) for the treatment of patients with acute leukemia. The Society for Immunotherapy of Cancer (SITC) convened a panel of experts to develop a clinical practice guideline composed of consensus recommendations on immunotherapy for the treatment of acute lymphoblastic leukemia and acute myeloid leukemia

    Использование барий-стронциевого карбонатита при изготовлении сварочных флюсов на основе техногенных отходов металлургического производства

    Get PDF
    В данной работе рассмотрена возможность использования барий-стронциевого карбонатита при изготовлении сварочных флюсов на основе шлака производства силикомарганца, а так же на основе ковшевых электросталеплавильных шлаков, образованных при производстве рельсовых марок стали. В серии опытов в лабораторных условиях изготавливали и исследовали различные составы сварочных флюсов, были определены химические составы наплавленного металла, проведен металлографический анализ.In this paper the possibility of using barium-strontium carbonatite in the manufacture of welding fluxes on the basis of slag from the production of silicomanganese, and based on ladle steelmaking slags formed in the production of rail steel grades. In a series of experiments in the laboratory have produced and investigated different compositions of welding fluxes, were determined the chemical compositions of the weld metal metallographic analysis

    Genome size diversity in angiosperms and its influence on gene space

    Get PDF
    Genome size varies c. 2400-fold in angiosperms (flowering plants), although the range of genome size is skewed towards small genomes, with a mean genome size of 1C = 5.7 Gb. One of the most crucial factors governing genome size in angiosperms is the relative amount and activity of repetitive elements. Recently, there have been new insights into how these repeats, previously discarded as ‘junk’ DNA, can have a significant impact on gene space (i.e. the part of the genome comprising all the genes and gene-related DNA). Here we review these new findings and explore in what ways genome size itself plays a role in influencing how repeats impact genome dynamics and gene space, including gene expression
    corecore