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Here, we show that training with multiple noncommunicable diseases (NCDs) is both 

feasible and beneficial to modeling this class of diseases. We first use data from the Cancer 

Genome Atlas (TCGA) to train a pan cancer model, and then characterize the information the 

model has learned about the cancers. In doing this we show that the model has learned 

concepts that are relevant to the task of cancer classification. We also test the model on 

datasets derived independently of the TCGA cohort and show that the model is robust to data 

outside of its training distribution such as precancerous legions and metastatic samples.  

We then utilize the cancer model as the basis of a transfer learning study where we 

retrain it on other, non-cancer NCDs. In doing so we show that NCDs with very differing 

underlying biology contain extractible information relevant to each other allowing for a broader 

model of NCDs to be developed with existing datasets. We then test the importance of the 

samples source tissue in the model and find that the NCD class and tissue source may not be 

independent in our model. To address this, we use the tissue encodings to create augmented 

samples. We test how successfully we can use these augmented samples to remove or diminish 

tissue source importance to NCD class through retraining the model. In doing this we make key 

observations about the nature of concept importance and its usefulness in future neural 

network explainability efforts. 
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CHAPTER 1 

INTRODUCTION 

1.1 Noncommunicable Diseases and Epigenetics 

Noncommunicable diseases (NCDs) are a group of diseases that are not caused by the 

acute infection of a pathogen. They are responsible for an estimated 41 million deaths each 

year, this accounts for approximately 74% of all deaths worldwide. Of these, 9 million are 

caused by cancer globally.1 Many NCDs have complex risk factors that stem from genetic, 

epigenetic and environmental sources. The complex nature of these diseases makes detection 

and treatment difficult. The discovery of cell free circulating DNA exposed a new potentially 

powerful method of minimally invasive cancer detection.2,3 The increased load of cell free 

circulating DNA in cancer patients, regardless of cancer type or tissue of origin, meant that 

tumor may be diagnosed earlier than has been the normal.4,5 

Early events in tumorigenesis are attributable to epigenetic changes making epigenetic 

biomarkers attractive for early tumor detection.6 Epigenetic changes also continue to be 

prevalent through all stages of tumor progression.7-10 The same holds true for many other non-

cancer NCDs as well. 11-17 A broader understanding of the epigenetic changes that underpin 

these diseases may also provide druggable targets and may indicate an environmental or 

developmental risk factor for later development of a given NCD.  

1.2 Epigenetics  

The term epigenetic refers, broadly, to changes in gene expression and chromatin 

structure independent of the genetic sequence itself that are heritable from parent to daughter 

cells.18-21 Epigenetic mechanisms orchestrate complex developmental lineages in multicellular 
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organisms and generate functional diversity among cells and tissues. They integrate 

extracellular signals allowing the cell to respond to environmental stimuli, changing gene 

expression and therefore cell function without altering the genome of that cell. Due to this 

function, the role of epigenetics is best described as an interface between the static genome 

and a dynamic environment.18,21 

Of the various mechanisms that are covered by the field of epigenetics, methylation has 

garnered much attention as a potentially important diagnostic and therapeutic target.22-26 

Changes in DNA methylation are observed in many NCDs and are prevalent in all cancers.12-15,27-

40 While the contribution of methylation to disease development and progression is still not 

well understood, it is clear that methylation plays a key role in early disease development. 

Additionally, methylation is persistent on cell-free circulating DNA.2,3,41,42 The prevalence of 

detectable signal in the blood is vital for next generation minimally invasive diagnostics. This 

signal also can serve as target or proxy reporter for therapeutics. Together these qualities make 

methylation both a quantifiable diagnostic, a therapeutic target, and a rich source of data for 

monitoring therapy.  

1.3 Methylation 

Methylation refers to the addition of a methyl group to a cytosine residue. Often these 

modifications occur at cytosine-phosphate-guanine (CpG) dinucleotides.14,43,44 The density of 

CpGs and their proximity to promoters of genes defines those regions as islands, shores, and 

shelves.45,46 CpG islands are regions over 500 bp in length whose composition is >55% CpG and 

are typically found at or very close to a gene promoter. CpG shores are areas found within 2 

kilobases of a CpG island and have a lower frequency than associated islands. CpG shores often 
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lie within genes or intergenic regions. CpG shelfs are found within 4 kilobases of a CpG island 

and have a lower frequency of CpGs within them.47,48 There is an observed linear dependence 

on methylation status based on inter CpG distance. Generally, the greater the distance (in bp), 

the less likely two sites will share methylation status. Within islands, CpGs are often < 25 bps 

apart with islands containing up to 60 CpG sites.49 

In development, approximately 20% of all methylated sites are dynamically regulated 

while the remaining are static. Genomic regions are generally referred to as hypomethylated or 

hypermethylated when they exhibit decreased or increased methylation levels relative to a 

control. When methylation changes do occur, the ‘state’ of the cell is altered.  

1.4 Methylation and NCD Etiology 

While changes in methylation are generally tightly regulated, it is possible for cells to 

become predisposed to disease onset through dysregulation of methylation.6-8,10 

Hypomethylation is associated with greater access to promoter regions and may turn on or 

upregulate downstream genes. If an oncogene is erroneously hypomethylated, this may 

increase a cell’s likelihood of becoming precancerous.50 

Hypermethylation is associated with expression silencing through decreased 

transcription factor binding efficiency and chromatin formation and may downregulate genes 

such as tumor suppressor genes.51,52 The tumor suppressor p16 indirectly regulates p53 

through MDM2.51-54  When p16 is hypomethylated, the regulatory effects of the MDM2-p53 

cycle are negated resulting in a build-up of p53 at which point aggregates of p53 protein may 

be found rendering them functionally insignificant. Hypomethylation of p16 is therefore 
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considered a significant cancer risk factor for some tumors such as esophageal squamous cell 

carcinoma (ESCC). This is without the need for a second strike to the expressed copy of p16.51-53 

1.5 Methylation Detection  

There are several methods used in DNA methylation studies, however, we focus here on 

array-based methods as they are still the largest source of methylation data available today. 

1.5.1 Methylation Detection by Array 

The most common arrays utilize the Infinium systems.55,56 In each, the selected CpG 

sites are detected as unmethylated or methylated. The Infinium I system uses a two probe 

system while the Infinium II uses a single probe system. In both cases a CpG site is measured as 

methylated, M, or unmethylated, U.55,56 

The array system relies on bisulfite conversion of unmethylated cytosines. DNA is first 

denatured and exposed to sodium bisulfite which deaminates unmethylated cytosines leaving a 

uracil in its place.55-57 Converted DNA is then PCR amplified where the uracil is replaced by 

thymine.57 Probes to detect methylated sites contain a guanine at the location of the 

methylated cytosine allowing the probe to form a base pair and extension to continue. At an 

unmethylated site a thymine exists in place of the cytosine preventing base pairing and 

stopping the extension.55,56 

The methylated versus unmethylated probes may then be quantified to determine 

methylation level at a given site. Beta value, a common metric to quantify methylation level, is 

calculated as the ratio of methylated over total probes (methylated plus unmethylated) for a 

given site,  
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Betaj =  
Mj

Mj + Uj
 

where Uj is the number of unmethylated probes at a site j, and M is the number of methylated 

probes at site j. This metric is convenient for use in neural networks as they have a range of 

[0,1] which is optimal in these models.55,56,58 

1.5.2 Methylation Detection Technologies 

The illumina 450k array measures 480,000 CpG sites from across the genome including 

CpG islands, CpG island shores, gene promoters, gene bodies, and intergenic regions, enabling 

researchers to examine methylation profiles at different genomic regions. Its broad range of 

curated sites made it attractive for a large number of studies and has resulted in a high volume 

of 450k array data.55,56,58 The wide adoption of the 450k array has led to extensive validation of 

the array and a large number of studies and tools dedicated to its use, processing and 

limitations. 

1.6 Modeling NCDs 

Modeling of NCDs has largely been done on individual diseases in individual tissues and 

generally is based on small sample sizes.59-61 The volume of information present in online 

repositories makes it possible to aggregate data into a larger set for use in more comprehensive 

models covering more tissues and more diseases. To date, no large-scale study has been 

conducted of any NCD outside of cancer that utilizes methylation data.  

Many studies did not have the number of samples to support a statistical analysis of 

such a large number of sites and focus on very few sites that are the result of feature selection 

and dimensionality reduction pipelines. While studies so far have yielded important information 
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about the role of methylation in NCD development,7-17,24,25,49,51,62-66 large-scale studies other 

than of cancer have not been pursued. Though a lack of a coordinated large-scale effort for 

non-cancerous NCDs is evident, a large volume of NCD data has become available in recent 

years and been accessible through various online repositories, which can be leveraged for NCD 

model development.  

1.7 Challenges Associated with Aggregating Biological Data from Various Sources 

1.7.1 Batch Effect 

Batch effect refers to systematic variation in experimental data that arises from non-

biological sources, such as technical variability introduced during sample processing, differing 

experimental conditions, or variations in reagents or equipment.67 Such variations in individual 

studies are noise and may be filtered out without much consequence. However, across 

different studies, the noise signature introduced by each study may become a detectable signal 

that a model could utilize for the task it is trained on. This may impact data interpretation and 

introduce false associations or artifacts.67,68 

Models trained on datasets that suffer from batch effect tend to perform poorly outside 

of the training data due to the reliance on information that is specific to that data including the 

noise introduced by batch effect intrinsic to that data. Care must be taken to identify potential 

batch effects and mitigate their effects before model training.67,68 

1.7.2 Bias  

Medical and biological data often contain missing or underrepresented areas in their 

datasets. Bias is an issue related to batch effect but is often used to describe the composition of 
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the dataset rather than differences in trends in each component set.67-72 In disease studies, 

there could be many sources of bias that arise from clinical practices, choice of assay, location 

or economics. Many of the factors that create bias are often outside of the direct control of 

researchers. For example, they cannot force someone to miss time at work to participate in a 

study. While aggregating smaller datasets together may improve statistical power, improper 

care in selecting the datasets may introduce bias into the larger set. This reality is reflected in 

large biological datasets of all types.73-75 These biases can be damaging to people who fall into 

the segment of the population that is missed in the dataset making the set unfair in its 

usefulness and outcomes. Additionally, poor sampling coverage can lead to undertrained 

models in those regions meaning they may seem to perform well overall but are 

inconsistent.73,75 When it comes to health outcomes and therapy development, these variations 

in performance can be deadly.  

1.7.3 Metadata 

Metadata is data that describes aspects of the data of interest not discernible from the 

given data76. In modeling it is vitally important as it serves as information upon which decisions 

will be made during dataset selection and construction and may be used for downstream 

labeling of samples and post hoc analysis of a trained model.76,77 In methylation data this is 

often a set of descriptors of the methylation data source such as ‘Age at collection’, ‘Species’, or 

‘Disease status’. In virtually all cases metadata is human entered and follows loose standards on 

format or necessary information. In many cases datasets have varying entries for the same field 

of metadata that arise from human error, such as spelling errors, or discrepancies of entry 

across multiple individuals, such as abbreviation being used by one individual but not by 
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another. Across samples there is virtually no standard of entry outside of the standards 

imposed by some data repositories on format such as those imposed by the National Institutes 

of Health: Genome Expression Omnibus (NIH GEO).  

The non-uniformity and general messiness of human entries make it challenging for a 

data engineer to understand the initial set of data they are presented with. Standardizing and 

processing non-uniform metadata is incredibly time consuming, slowing down all other analysis 

until it is accomplished. In some cases, the importance of including metadata is ignored 

completely or is encoded into nonstandard locations such as sample name; as an example, a 

sample may be named ‘SCZ_sample_age_34_male’ rather than having entries for disease 

status, age and gender. Discovering and extracting this information is often more difficult and 

time consuming and generally yields far less information than standard metadata sources. 

1.8 NCDs and Neural Networks 

Traditional pipelines such have been widely used to identify methylation sites that are 

valuable as diagnostic markers or regulatory sites in NCDs. This type of statistical analysis 

provides significance measures for CpGs and the model’s confidence in that significance 

estimation in a reproducible manner. Though widely used, the differential analysis approach is 

limited in its scope in a few important ways. When analyzing thousands to millions of CpG sites 

simultaneously, these methods often face the challenge of multiple hypothesis testing which 

can lead to an increased risk of false positives. Furthermore, they usually focus on individual 

CpG sites or regions causing them to potentially miss more complex patterns or interactions. 

Linear models used in traditional approaches may fail to capture complex, non-linear 

relationships between methylation patterns and experimental conditions.  
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Neural networks overcome many of these issues. Neural networks can intake a large 

number of features and are capable of learning complex, non-linear relationships. In addition, 

the information learned may be used to train new models through transfer learning or fine-

tuning.  

1.8.1 General Overview of Neural Networks and Their Function 

Deep learning is based on a mathematical model called the artificial neural network 

(ANN),78 which is composed of interconnected nodes (w) that process input data. The nodes are 

organized into layers (l) that perform a specific computation, f(). The output of one layer is fed 

as input to the next layer until the final layer produces the outcome prediction.  

The fundamental equation of an artificial neuron is the dot product of an input vector X 

and an input vector, W, which is added to a bias term, b, and then the application of an 

activation function, f() to this term. Mathematically, this can be expressed as: 

𝑎𝑎 = 𝑓𝑓( �𝑤𝑤𝑙𝑙𝑥𝑥𝑙𝑙−1

𝐿𝐿

𝑙𝑙=1

+ 𝑏𝑏𝑙𝑙) 

where x1, x2, ..., xn are the input features, w1, w2, ..., wn are the corresponding weights, b is the 

bias term, f() is the activation function, and a is the output of the node.78 

The input data, X, is paired with their corresponding labels denoted by Y. The neural 

network is trained by computing the distance between labels Y� predicted by it and Y using a 

loss function. Stochastic gradient descent (SGD) is a commonly used algorithm used to train 

neural networks, which entails iteratively updating the weight vector and biases with the goal 

to minimize the loss function. This is done using the formula θ = θ - α * ∇L(θ) where θ is the 

complete set of parameters, i.e. (w1, w2, … wn) and (b1, b2 … bn), for all layers from 1st to nth in the 
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network. The variable α is the learning rate and ∇L(θ) is the partial derivative of the loss 

function L, referred to as the gradient of the loss function.79-81 

The learning rate, α, controls the size of the updates to the parameters and is an 

important hyperparameter that must be carefully chosen to ensure the algorithm converges to 

a good solution. If the learning rate is too large, the algorithm may overshoot the minimum of 

the loss function and fail to converge, while if it is too small, the algorithm may take too long to 

converge. 

Stochastic gradient descent as described above has several weaknesses. It can fall into 

one of the local minima on the optimization landscape causing models to underperform and 

may be very slow to converge. Additionally, where the gradient is flat or saddle shaped the 

model may stop making meaningful updates and become stuck in an area of the gradient that is 

not a minimum. Variations on SGD have since been developed that attempt to address these 

issues such as adam,82 mini-batch SGD,83 RMSprop,84 and adagrade.85  

1.8.2 Unsupervised and Supervised Machine Learning 

Neural network algorithms can be broadly categorized into two types: supervised and 

unsupervised learning. While the supervised learning is driven by learning of patterns inherent 

in a set of labeled data by the algorithm, unsupervised learning does not require characterized 

or labeled data to learn the patterns. In the supervised learning, the performance of the neural 

network is heavily dependent on the quality and quantity of labeled data available for training. 

In contrast, unsupervised learning can be performed on large amounts of unlabeled data, which 

is often easier to obtain in many domains. 

In the supervised learning the neural network is trained using labeled data, wherein, Y, a 
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set of ground truth labels for the data, is supplied to the model. This type of learning is 

commonly used in tasks such as image classification, speech recognition, natural language 

processing, as well as many biological or biomedical domains, where the goal is to classify or 

predict a specific output given an input. 

In the unsupervised learning of a neural network, the input X is used in place of a 

supplied Y in the loss function, and thus, the output is a generated sample. In general, 

unsupervised neural networks are used for generative tasks. Variational autoencoders (VAEs) 

and generative adversarial networks (GANS) are used for these tasks. Transformer networks 

and graph neural networks (GNNs) are common as well but not exclusive to unsupervised 

learning tasks. The work in this dissertation focuses on unsupervised methods, specifically 

VAEs. 

1.8.3 Variational Autoencoders  

The goal of a VAE is to compress and regenerate an input sample.86. The VAE 

architecture uses an encoder/decoder with a bottleneck in the middle. The encoder , e(), is a 

set of layers that gradually decrease in size compressing information from the input to a latent 

layer , z = e(x). The layers of the decoder, g(), increase in size from that of the latent layer to the 

input size to generate the input sample x� = g(z) = g(e(x)) 86. Formally, the encoder finds a set of 

weights that approximates a function to compress the input X into a latent vector, Z. Given Z, 

g() then learns a set of weights to approximate a reconstruction function such that X� ≈ X.  

The VAE loss attempts to optimize the evidence lower bound (ELBO) which consists of 

two parts: a reconstruction loss and a regularization loss. The reconstruction loss is as defined 

above and measures the distance between the output and the input. It may be any of the loss 
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functions such as mean squared error or cross-entropy depending on the specific needs of the 

modelling task.  

The regularization loss defines the VAE from a normal autoencoder, which uses only 

reconstruction loss, as it forces the latent distribution to be gaussian in nature. This is done by 

calculating the loss between the latent distribution and a gaussian prior in terms of the 

Kullback-Leibler loss (KL). The regularization loss is defined as: 

KL =  −
1
2
�(1 − log (�ϱj�

2
) −  �μj�

2
− �ϱj�

2
)

J

j=1

 

where μj is the standard deviation of a gaussian and ϱj is the mean of a gaussian. Both are 

provided by a sampling layer in the network that is only connected to the latent layer and has 

no input. The full VAE loss is, 

VAE = (KL) + regularization loss, where KL is the regularization loss 86. 

Plain autoencoders (AEs) do not use a regularization loss and therefore do not explicitly 

constrain the structure of the latent space. This only penalizes deviation from the original input 

and allows for highly nonlinear encodings of samples in the latent space. Given this, AEs often 

cluster dissimilar samples nearby and may leave large regions between sample clusters 

unutilized and devoid of useful latent encodings causing the generator to output noisy or 

nonsense output when sampling that area of the latent space. Ideally, a latent space should be 

smooth, arranged with similar samples closer to each other, and continuous, with samples 

arranged so that there is a coherent interpolation between two points. In VAEs, smoothness 

and continuity are achieved by constraining the latent space through the additional 

regularization loss term. 
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1.8.4 Concepts 

As mentioned in the previous section, concepts are high level abstract features that 

arise from the combination of two or more lower level features such as the input features. They 

are useful in interpreting a model’s performanc. 86-89 By understanding the model at a 

conceptual level changes may be made in the parameters, hyperparameters or training data to 

improve model quality. In contrast to feature level explanations, such as feature saliency 

maps,86,90 concept analysis allows researchers to gain an understanding of human level 

concepts and provides a means to manipulate the network. Feature based methods exist 

outside of the model’s inner representation of the data and may be difficult to interpret, 

especially in an omics setting where human interpretation is often not possible at the 

nucleotide or gene level without some aids. 

Concepts may arise at any layer of a neural network in either supervised or 

unsupervised settings. They capture underlying structure or patterns in the data that may be 

used for downstream tasks such as generation or classification. In the image classification tasks, 

concepts in lower layers (closer to the input) tend to be fine grained such as fine lines and dots. 

In the later layers, concepts are much larger and may include things such as noses, hands, or 

other large structures depending on the images being classified. It does not always hold that 

earlier layers have finer grained concepts but they are generally less complex.  

Concepts are detectable in a latent layer of a network. In many cases any layer except 

the input and output layer may be considered a latent layer. In the case of generative models, 

there is often a specific layer that is bottleneck, or the most compressed space, from which a 

generator network samples, which is referred to as the latent layer. In VAEs, this layer is the 
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sampling layer that generates the encoding z and is regulated by the regularization loss.  

All layers of a neural network produce vectors of some size, as such a concept may be 

described by a concept activation vector (CAV) that is the size and shape of the layer being 

investigated. The most commonly used method for detecting and quantizing a CAV is to 

subtract the mean vector of a class of samples from another class. Often the other class is 

simply a random subset of samples from the training set or the training set as a whole. Other 

methods focus on probability distributions of samples in the two sets. Every method produces a 

vector that may be traversed upon which at least one concept is encoded.  

1.8.5 Concept Level Model Explanation 

Testing with Concept Activation Vectors (TCAV)86,91 is a technique that measures the 

importance concepts in a neural network. It evaluates the degree to which a concept is 

represented in a latent layer and how important the concept is to the output of the model.  

This is done by first labeling data with known concepts. The method uses these labels to 

train a binary classifier on the CAVs. The boundary between the positive and negative classes is 

interpreted as the normal to the CAV. The CAV is then traversed, and a loss calculated for each 

step in the traversal. The gradient of the loss is calculated and the integral of the gradient gives 

the importance of each concept to a given output class.86,91 

TCAV is capable of evaluating concept importance in a model agnostic way. Due to this it 

is valuable for assessing different architectures on a given task and for identifying how a model 

may be improved. It is also capable of finding erroneously entangled concepts allowing the data 

set to be modified to better disentangle these concepts in subsequent training rounds. 

TCAV is a powerful method but has some disadvantages as well. Primarily, TCAV is 
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dependent upon human labeling. As datasets grow, good labels could be more challenging and 

expensive to generate. Additionally, TCAV does not give a complete explanation of the model’s 

performance or of learned concepts that impact that performance. This means that erroneously 

learned concepts may go undiscovered and biases in datasets may be difficult to understand, 

limiting model improvements.  

1.9 Hypothesis and Aims 

We hypothesize that cells exist on a methylation landscape that may be exploited to 

extract biologically significant information about that space using a neural network model. If 

this is true, then a neural network could be used to map all cell methylation states to a latent 

space regardless of the type or source of the cells. A pan-methylation model would 

fundamentally shift NCD research by unifying previously unconnected efforts across multiple 

diseases into a single space. This would mean that shared risk factors, drug targets and 

biomarkers could be investigated across diseases more easily. Moreover, complex relationships 

among CpGs could be more easily discovered by latent space analysis, giving rise to new 

hypotheses that have to be validated in the wet lab and thus uncover novel drug targets or 

biomarkers. 

Modeling multiple diseases across multiple tissues is a difficult task and requires care in 

data collection, data engineering, model choice and model analysis. To our knowledge, no 

effort, as of the publication of this dissertation, has been made to develop such a model. 

Therefore, we propose a series of steps to accomplish this task and demonstrate, through our 

experimental plan to accomplish the specific aims set forth, that it is possible. 
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1.9.1 Aim 1: Develop a Neural Network Model to Map the Landscape of the Cancer 
Methylome 
 
The Cancer Genome Atlas is a large repository of cancer data that spans multiple types 

of omics data. It contains over 20,000 samples representing 33 cancer types and normal 

matched tissue samples. It is the largest NCD repository in the world with over 2.5 petabytes of 

well curated data that was procured as a concerted effort by the National Cancer Institute and 

the National Human Genome Research Institute. The size and quality of TCGA data is 

unmatched and provides strong a basis to begin modeling NCDs. Because the data is sourced 

from multiple tissues with matched normal samples, a model derived from this data would 

have a broad representation of not only different cancers but normal tissues as well. With both 

disease and normal states represented, it should be capable of being retrained for other 

disease states or new tissues without the risk of overfitting. 

To this end, we proposed to develop a neural network based model that is capable of 

retaining the natural structure of the data while rendering low level feature representations 

into detectable concepts. While pursuing the goal of developing a pan disease model, it is 

necessary to retain as much usable information in the latent space as possible. In some training 

paradigms, such as pure supervised learning, information not relevant to the task may be lost. If 

this is allowed to happen, it would not serve the purpose of transfer learning well as the new 

task may require learning disease domain spaces that could have been discarded by the model 

trained to address a specific task. If information is lost that may be useful to future transfer 

learning goals, the model will appear brittle for new tasks and may require more data than is 

available to train.  

In this pursuit of developing a pan-cancer or pan-disease model, it important to analyze 
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the model’s performance and determine whether the presence of certain concepts can 

confound the interpretation of the model. Though neural networks are generally thought of as 

‘black box’ models, interpretability and explainability techniques have progressed far enough 

that models may be examined in a reliable fashion and their outputs explained with respect to 

their inputs. Saliency maps are input level importance scores. They indicate the importance of a 

feature for a given task (class label in the case of supervised learning) and provide a basis to 

better understand the model performance. Additionally, latent space analysis by visual 

inspection is a subjective way to interpret the latent representations of samples. On the other 

hand, concept level importance scores (such as TCAV) give researchers a deeper understanding 

at how human level concepts influence model behavior in an objective manner. These will be 

explored in this and later aims. 

1.9.2 Aim 2: Utilize the Previously Trained Pan-Cancer Model as a Foundation for a Model of 
Non-Cancer Noncommunicable Diseases (NCDs) 
 
To test whether a model trained on one type of NCD may be used to improve training of 

another type of NCD, we propose the use of transfer learning on several NCDs that are known 

to have methylation signatures. If the new model, derived via transfer learning, is capable of 

generalizing on this new data better than a model trained from scratch, this provides evidence 

that there is a shared landscape upon which NCDs lie, which may be exploited for future 

modeling purposes. 

To end this, we planned to compile a new dataset of NCDs for use in model training. This 

was accomplished by collecting methylation samples from the GEO database and minimizing 

specific sources of bias such as age, geographic location, gender, and tissue source. We 
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anticipated a significantly smaller dataset than the TCGA data used to train the model in Aim 1. 

We then planned to use a transfer learning approach to retrain the model while allowing it to 

rely on concepts learned previously. We used a two-round transfer learning scheme where the 

weights of model from Aim 1 were frozen and a new output layer was added to the model with 

random weights. This new layer was trained first, so that the random weights do not obliterate 

the learned information in the rest of the model during backpropagation. In the second round, 

all weights were unfrozen and a small learning rate was used to allow the model to fully adjust 

to the new task while not diminishing too much of its previously learned information. The 

model’s performance was assessed and concept based approaches to understand how to 

improve the performance were utilized. Similar methods as used in Aim 1 (section b) were used 

here with more emphasis on concept level analysis. Because of the smaller dataset, we 

anticipated incomplete sampling, leaving areas where the new model may not generalize well. 

We anticipated biases in the new dataset that could not get corrected. We posited that concept 

level analysis was better suited at illuminating those missing areas. 

1.9.3 Aim 3: Use Augmented Data to Fine Tune the Previously Trained Model 

The field of NCD modeling has been slow to progress and siloed among specific diseases 

and their tissue sources. This is symptomatic of a greater issue that is particularly vexing in 

omics data, the inability to generate high fidelity artificial samples for improved model training. 

This issue causes omic modelling efforts to rely on the availability of new usable data. Unless 

the task of data generation from a wet lab and the modeling task in a dry lab are unified, this 

means the modeling task is fundamentally slowed and beholden to the needs of wet lab 

experiments, which may not generate the kinds of samples or the volume of samples necessary 
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for modeling. Using the concept level analysis, we may directly apply the concept vectors to 

existing samples to produce augmented samples that smooth our datasets sampling over areas 

that were not present in the original dataset. Although these samples are expected to be of 

lower quality than real experimental data, they provide an opportunity to quickly iterate over 

models that can generalize better than those using only the existing data. We expect this to 

provide important knowledge about omics modeling and elucidate important mechanisms in 

NCD biology. 
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CHAPTER 2 

CANCERNET: A UNIFIED DEEP LEARNING NETWORK FOR PAN-CANCER DIAGNOSTICS* 

2.1 Introduction 

Survival rates of cancer patients dramatically improve when diagnosed in early stages as 

tumors may not have spread yet. However, detection rates in early stages are inconsistent 

across cancers. As an example, ~63% of breast cancer cases are diagnosed in stage 1 while only 

~17% lung cancer cases are diagnosed in the same stage 

(https://seer.cancer.gov/csr/1975_2017/). This is owing, in part, to the fact that diagnostic 

development has historically focused on detecting individual cancers. Many cancers are detected 

only when the symptoms appear, which most often occur in later stages. The development of pan-

cancer diagnostics would enable detection of more cancer types, including rare cancers that are 

not typically the focus of individual biomarker research, thus dramatically improving the 

prognosis and survival of cancer patients. Such a tool would allow clinicians to diagnose more 

patients earlier and guide more informed treatment decisions. Additionally, successful 

application of such a tool to pre-symptomatic patients would necessitate further efforts to 

locate the tumor to a specific body site with greater resolution. Here, we present a unified 

cancer diagnostic capable of both, robust cancer diagnosis and tissue of origin detection, for 33 

different cancers. 

Approximately 60% of genes in humans are found in genomic regions dense with CpG 

 
* This entire chapter is reproduced from Gore, S., & Azad, R. K. (2022). CancerNet: a unified deep learning network 
for pan-cancer diagnostics, BMC Bioinformatics, 23(1), 1-17. Originally published under CC-BY; authors retain 
copyright. 
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dinucleotides called CpG islands which may be methylated.92 The degree of methylation 

influences expression of downstream genomic regions. Tissue specific patterns of methylation 

arise through development and limit the possible changes to the cell state during development 

or carcinogenesis.93,94 Methylation has been shown to be significantly altered in many cancers 

making it promising as a pan-cancer biomarker, and furthermore, as patterns of alteration vary 

by cancer types or subtypes, methylation is being exploited to distinguish different cancer types 

or subtypes.92,95-100 Methylation data have previously been used to successfully develop 

classifiers for individual cancer types and cancers derived from tissues with common 

developmental lineages.101-115  

The high dimensional, real value data obtained from high-throughput methylation 

arrays, such as those archived in The Cancer Genome Atlas (TCGA; 

https://www.cancer.gov/tcga), are well suited for use with machine learning classifiers, 

including neural network. Detection of tissues of origin of cancers can be cast as a supervised 

task within the realm of machine learning. Supervised methods may artificially separate 

samples based only on pre-defined classes; however, unsupervised methods may generate a 

latent space which can be leveraged for many downstream tasks while retaining the underlying 

structure of the data. Among neural network architectures, unsupervised methods have seen 

growing use in biological data analysis, particularly for dimensionality reduction with high 

degrees of success.116-120 

Briefly, a class of unsupervised methods attempts to regenerate realistic samples from 

some low dimensional representation.86,121 Variational autoencoders (VAEs),86 an unsupervised 

method, have been used as a basis for downstream regression or classification in a host of 
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applications, including methylation or transcriptional data analysis. This has been done by 

passing the latent mapping of a sample to a classifier such as a support vector machine.120 

However, this does not allow for features in the latent space to be modified to improve the 

classification task. The unsupervised and supervised tasks may be used to constrain each other, 

resulting in an unsupervised latent space that retains the natural distribution of the data but is 

optimized for the classification task.  

Here we propose a model where both the generative (unsupervised) and the 

classification (supervised) trainings take place at the same time. This hybrid generator/classifier 

architecture enables learning of discriminative features intrinsic to input data in tandem with 

producing a robust classifier. Tuned for and trained on cancer tissues of origin and normal/non-

cancerous tissues, our proposed neural network, CancerNet, is currently capable of detecting 33 

different cancers. CancerNet was assessed on multiple independent datasets including samples 

that were not used in training, and metastatic and early cancer samples. 

2.2 Materials and Methods 

2.2.1 Methylation Data 

Illumina 450k methylation array data were downloaded from The Cancer Genome Atlas 

(TCGA) GDC portal for all cancer types. Metastatic and recurrent samples were removed. This 

resulted in total 13,325 samples. Each sample was labeled by its tissue of origin and TCGA 

cancer type designation. Rather than creating a distinct class for each normal tissue, all samples 

that were from non-cancerous tissues were included in the normal class. This was done due to 

the extremely low numbers of normal samples available for some tissue types. Additional 

validation sample sets were downloaded from NCBI GEO (https://www.ncbi.nlm.nih.gov/geo/). 
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Details of specific GEO datasets used are provided in Supplementary Table 1. 

2.2.2 Data Preparation 

We relied on the CpG density clustering approach implemented in CancerLocator to 

process the methylation data before inputting to CancerNet.107 CpGs that were not assigned to 

a CpG island were first removed. The remaining methylation data were scanned for Illumina 

450k probes that map to within 100 bp of each other, which were then concatenated. These 

clusters were then filtered to eliminate those with 3 CpGs or less.107 The beta values for the 

resulting clusters were then averaged. This resulted in 24,565 clusters that map to CpG islands. 

These average beta values were used as input to CancerNet. The dataset was then randomly 

split into training/test/validation sets with 80% in training set and 10% each in the test and 

validation sets. We ensured that the training set did not include more than one sample per 

patient by removing one of any matched pairs present in the dataset and replacing it with a 

random sample from the same class. 

2.2.3 Performance Assessment 

Held-out test data from TCGA and GEO datasets were used to assess CancerNet’s 

performance measured in terms of recall, precision, and F-measure. For a specific class (e.g. a 

cancer tissue of origin or normal), recall defines the fraction of samples belonging to this class 

that are correctly identified by a classification method. Precision is the fraction of predictions 

for this class that are correct, and F-measure is the harmonic mean of recall and precision. 

Unless otherwise noted, the F-measure presented in this work is weighted F-measure due to 

large class imbalance among tumor classes. Weighted F-measure is the weighted average of F-
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measure values with weight proportional to the number of true instances for each class. The F-

measure function in the scikit learn python library (https://scikit-learn.org/stable/index.html) 

was used to calculate this. 

2.2.4 Neural Network 

The CancerNet program was written in Python using the keras package (version 2.0.8) 122 

with a tensorflow (version 1.12.0)123 backbone. The neural network architecture of CancerNet 

consists of an encoder, decoder and classifier (Fig. 2.1). The encoder has an input layer of 

24,565 nodes, which is fully connected to a dense layer of 1,000 nodes that uses a relu 

nonlinearity and two dense activation free layers that are passed to a probabilistic layer, also 

called the latent layer, characteristic of a VAE architecture with 100 nodes. The decoder has a 

single dense layer of 1,000 nodes that uses a relu activation and is fully connected to an output 

layer of 24,565 nodes that uses a sigmoid activation. The classifier takes the latent layer as an 

input to a dense 100 node layer that uses a relu activation and is fully connected to the 

classifier output layer that has 34 nodes and uses a softmax activation (Fig. 2.1). CancerNet was 

trained using the Adam optimizer with a learning rate of 0.001. All layers were randomly 

initialized and then trained until convergence. Early stopping was used to limit training time and 

prevent overfitting and was limited to 50 epochs without validation accuracy improvement. The 

final loss of the network was the sum of the VAE loss and the categorical cross-entropy loss, 

which are applied to the generative output and the classification output respectively. 

VAE loss is composed of two terms. The first term quantifies the divergence between the 

output of the generator and the input to the model using categorical cross-entropy. The second 

term is used to enforce gaussian distributions in the latent layer by calculating the Kullbeck-
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Leibler divergence of the encoders’ distribution and a standard normal. The VAE loss beta term 

can be used to create a disentangled VAE. When beta is greater than one, features are forced to 

disentangle and become easier to interpret. Beta is set to 1 in CancerNet. 

 
Figure 2.1: The CancerNet architecture 

Methylation data are input to the encoder. The encoder is composed of two dense feedforward layers 
using the Relu activation function. Output of the encoder is passed to the probabilistic layer, which 
passes its output to the classifier and generator/decoder. The classifier is two dense feedforward layers, 
the first with the ReLu activation function and the second with the softmax activation function. The 
decoder is two dense feedforward layers, the first using the Relu activation and the second using the 
sigmoid activation. 

 
Cross-entropy is applied to the classifier output to estimate a loss based on the 

difference between the classifier output and the class labels. This is distinct from the cross-

entropy for quantifying the VAE loss based on the difference between the generative output 

and the sample itself. Weights of 0.01 and 1 are applied to the VAE loss and classifier loss, 

respectively. The generator and classification losses together enforce the latent space 

representation of samples to preserve information about samples’ natural distribution while 

also creating an easily classifiable distribution of samples. In doing so the latent space acts as a 

prior in the classifier. 
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2.2.5 Prevention of Leakage 

Leakage is a phenomenon in machine learning where information about the task is 

inadvertently added to the data on which the task is being performed 124. This can lead to very 

brittle models or even completely useless models when used outside the test and training data. 

Tasks such as normalizing datasets prior to splitting into training/testing/validation sets can 

introduce information present in the test and validation sets into the trained model, thus 

artificially inflating the performance of the model in validation and test phases.124 The beta 

values of the Illumina 450k array were normalized on a sample by sample basis and bounded in 

the range [0, 1], preventing information from crossing among samples. The validation set is 

then used as a sanity check to confirm the model performance on unseen data. We also 

demonstrate further that the model is robust by using independent datasets retrieved from 

GEO. 

2.3 Results 

2.3.1 Model Performance 

CancerNet’s parameters were learnt from training data obtained from The Cancer Genome 

Atlas (TCGA) for 33 different cancers and a normal class. The cancers investigated were 

adrenocortical carcinoma (ACC), bladder urothelial carcinoma (BLCA), breast invasive carcinoma 

(BRCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), lymphoid neoplasm diffuse large 

B-cell lymphoma (DLBC), esophageal carcinoma (ESCA), glioblastoma multiforme (GBM), head 

and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal clear cell 

carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), acute myeloid leukemia (LAML), 
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brain lower grade glioma (LGG), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma 

(LUAD), lung squamous cell carcinoma (LUSC), mesothelioma (MESO), ovarian serous 

cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD), pheochromocytoma and 

paraganglioma (PCPG), prostate adenocarcinoma (PRAD), rectum adenocarcinoma (READ), 

sarcoma (SARC), skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), testicular 

germ cell tumors (TGCT), thyroid carcinoma (THCA), thymoma (THYM), uterine corpus 

endometrial carcinoma (UCEC), uterine carcinosarcoma (UCS), uveal melanoma (UVM). 

 
Figure 2.2: Misclassification rates for 4 cancer types to illustrate trends observed in CancerNet.  

A.COAD misclassifies primarily to READ with fewer misclassifications in ESCA and STAD. B. ESCA 
misclassifies to HNSC, LUSC and STAD. Lung misclassifications occur often among some sample types. C. 
OV samples misclassify as the two uterine cancer types present in CancerNet; UCEC and UCS. D. LIHC 
misclassifies as CHOL, MESO, SKCM and NORM. (refer to Abbreviations for cancer types indicatedr 
different cancers indicated on the X-axis; normal is abbreviated NORM)).  

 
The overall performance of CancerNet, as quantified through F-measure (see Methods), is 

~99.6% (Supplementary Table 2). Many of the misclassifications occurred among cancers from 

the same or similar organs and tissue classes that share developmental lineages (Fig. 2.2 and 
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Supp. Figs. 1-28). Where this did not hold true, we found a pattern of misclassification among 

adenocarcinomas and squamous carcinomas (Fig. 2.3, Supplementary Figs. 1 -28). Examination 

of the latent space (Fig. 2.4), along with misclassification rates, shows that misclassifications 

occurred among closely neighboring classes (Fig. 2.2) or for individual samples of a class that 

are singletons and very far from the rest of the class (Fig. 2.4 and Supplementary Figs. 29 - 63). 

 
Figure 2.3: Confusion matrix of TCGA primary tumor classification 

Primary tumors across 33 TCGA cancer types were classified. The correct class is shown by the Y-axis and 
the predicted class is shown by the X-axis (refer to Abbreviations for different cancers indicated on the 
X-axis; normal is abbreviated NORM). 

 

2.3.2 Latent Space Evaluation 

We confirmed that the latent space of CancerNet maintains the natural distribution of 

the sample data by comparing it to the latent space generated through a multi-omic clustering 

algorithm in a flagship paper from TCGA consortium.108 The latent space of CancerNet shows 

high concordance with the latent space of TCGA data presented in Hoadley et al. study108 (Fig. 

2.4). Similar to this study, we observed clustering of the samples by tissue of origin and position 

in a specific organ in the CancerNet’s latent space (Fig. 2.4). Similar distributions of various 
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subtypes of cancers were also observed. These observations suggest that CancerNet’s latent 

space maintains the natural distribution of the sample data. Note that Hoadley et al. used a 

highly curated set of methylation sites, devoid of any tissue specific promoter sites and chosen 

based on hypomethylation status, in order to perform unsupervised clustering of methylation 

data samples to establish that cancer type specific signatures are present in the tumor 

samples.108 In contrast, CancerNet obtains similar results but with far less preprocessing of the 

data and in a manner that facilitates integration with other data types such as those used in the 

Hoadley et al. study (e.g. mRNA, aneuploidy, miRNA, and RPPA) by way of a latent space that is 

vector encoded.  

 
Figure 2.4: Visualization of test samples in the latent space 

T-SNE was used to reduce the latent space dimension from 100 to 2. Samples originating from the same 
tissue form cluster(s) and are close to sample groups of similar tissues. Those tissues that often 
misclassify among each other, such as UCS/UCES and COAD/READ, appear intermingled in the latent 
space. For abbreviations, refer to the full abbreviation list. Normal samples are abbreviated NORM and 
are displayed in gray.  
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Figure 2.5: Renal subtype latent space distribution 

(A) Samples representing different renal subtypes, as determined by the TCGA analysis of renal cancers, 
are mapped onto the latent space. Clear separation of subtypes PRCC T1 and T2 and ChRCC indicates 
that the neural network has learned features for discriminating between these renal subtypes. (B) 
Separation of renal samples in the latent space by gender.  

 
Renal cancer samples (KIRC, KICH, and KIRP) were apportioned into 3 clusters in the 

latent space (Fig. 2.4), very similar to those described in Hoadley et al. study.108 The largest 

cluster consists of two distinct subclusters connected by a streak (Fig. 2.5A); while one 

subcluster is primarily composed of clear cell renal cell carcinoma (ccRCC) samples, the other is 

populated with papillary renal clear cell type1 (PRCC T1) samples with type 2 (PRCC T2) 

connecting these two (Fig. 2.5A). The remaining clusters are primarily composed of ccRCC and 

chromophobe renal cell carcinoma (chRCC) samples, respectively (Fig. 2.5A); chRCC is a rare 

subtype of renal cell carcinoma (RCC) found in only 5% of all renal cancer patients with a 

distinct etiology.125 The presence of this RCC subtype as a distinct cluster in the latent space is 

encouraging as it could indicate the presence of detectable and therapeutically important 

features in the network. Among renal cancers, a distinct separation of samples by gender was 
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also observed in the latent space (Fig. 2.5B). 

 
Figure 2.6: Gastric adenocarcinoma latent space distribution.  

Samples representing different gastric adenocarcinomas cluster in the latent space by (A) body site of 
tumor and (B) hypomethylation status. The linear kernel is used to test the separability of each in the 
full 100 dimensional latent space. The high performance of these models shows that the body sites and 
methylation statuses are not overlapping in the latent space in the way that the t-SNE plot appears to 
show in 2 dimensions. 

 
Gastrointestinal adenocarcinoma samples also arrange in a similar way as in the latent 

space of Hoadley et al. study.108 Esophageal samples are split among the larger gastrointestinal 

cluster and a cluster of HNSC in the latent space (Fig. 2.4). Gastrointestinal adenocarcinomas 

show strong organ site signatures (Fig. 2.6A) and are best explained by hypomethylation status 

(Fig. 2.6B). Groupings correspond to CpG island methylator phenotype (CIMP) status as 

described by Ang et al.126 Non-CIMP separates from CIMP-high (CIMP-H) and CIMP-low (CIMP-L) 

(Fig. 2.6B). Stomach adenocarcinoma (STAD) and esophageal carcinoma (ESCA) group together 

with CIMP-H and gastroesophogeal (GEA) CIMP-L status. Epstein-Barr virus (EBV) positive 

samples form their own cluster. Similarly, molecular subtypes follow the same pattern as in 
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Hoadley et al. study108 (Fig. 2.6B). In Figure 2.6 the latent space has been reduced from 100 

dimensions to 2 for visualization purposes. To verify that distinct clusters did form by body sit 

and hypomethylation status in gastrointestinal adenocarcinomas we trained a linear SVM on 

these classes. These models achieve high (greater that 10 fold cross validation accuracy scores  

demonstrating the separability of these classes in the latent space. 

Squamous cell carcinoma samples (CESC, ESCA, HNSC, and LUSC) segregate by human 

papillomavirus (HPV) status in the latent space (Fig. 2.7A), which is in concordance with 

Campbell et al. study.127 However, CancerNet did not show sensitivity to smoking status (Fig. 

2.7B). 

 
Figure 2.7: Squamous cell carcinoma latent space distribution.  

Squamous cell carcinoma samples tend to cluster in the latent space by their tissues of origin and by A) 
HPV status but not by B) smoker status. 

  

2.3.3 Assessment on Metastatic Cancers, Precancerous Lesions, and Age-related Methylation 
Drift 
 
When trained on a narrow range of data neural networks may catastrophically fail on 
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unseen conditions; these models are said to be brittle. To assess how brittle CancerNet is, we 

evaluated across 3 “untrained” conditions: metastatic tumors, precancerous lesions, and age 

stratified data. Our results demonstrate that CancerNet performs well across all stages of cancer 

and is robust to age related epigenetic drift. 

2.3.4 Metastasis and Precancerous Lesions 

Metastatic cancer is the cause of death in 66% of solid tumor cases.128 Identification of a 

second cancer occurrence as a metastatic or second primary tumor is important to inform 

treatment. In 3-5% of all cases, cancers of unknown primaries (CUPs) are also found;129 these 

tumors arise as the metastasis of previously undiscovered primary tumors and are the fourth 

most deadly cancer.129,130 Detecting the tissues of origin in both of these scenarios can assist in 

critical treatment decisions. We demonstrate that CancerNet is capable of robust and highly 

accurate metastatic tissue of origin classification and this performance is maintained in early 

cancer samples as well. 

To assess CancerNet’s performance on metastatic cancer datasets, we first predicted 

tissue of origin for metastatic samples available in TCGA for BRCA, CESC, COAD, HNSC, PAAD, 

PCPG, PRAD, SARC, SKCM, THCA. The tissues of origin for all these metastatic cancers were 

predicted with an overall unweighted F-measure of 91%. 

TCGA data were processed by the different labs and so it is possible that uninformative 

variance in noise could be introduced due to small but predictable variance in human error, 

reagent preparation or some other part of the sample processing pipeline. This is known as 

batch effect. Batch effect can provide a source of information about sample classes that, if 

learned, could make the model brittle in real world applications where the same effect is not 
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present. We used several Gene Expression Omnibus (GEO) datasets to assess whether this was 

the case and further validate the model on non-TCGA derived data. These datasets also gave us 

the opportunity to test CancerNet’s performance on cancer stages that were not represented in 

TCGA, such as precancerous lesions. These, along with primary, metastatic, and recurrent 

samples, made possible the assessment of CancerNet’s performance across all stages of cancer 

for several tissue and cancer types. 

The first dataset (GEO accession: GSE58999) contained paired metastatic and primary 

tumors in breast cancer patients. CancerNet achieved an unweighted F-measure of 99% on this 

dataset. The second dataset (GEO accession: GSE113019) contained triplets of liver samples from 

each patient, namely, non-tumorous, primary tumor and recurrent samples, respectively. 

CancerNet achieved an unweighted F-measure of 100% for all primary tumors, 100% for 

metastatic samples, and 85% for the normal samples. The third dataset (GEO accession: 

GSE38240) contained 4 normal samples and 8 PRAD metastatic samples; CancerNet attained 

unweighted F-measure of 88% and 93% for these classes, respectively. 

The final dataset (GEO accession: GSE67116) consisted of 96 uterine samples that were 

stratified across cancer stages with precancerous endometrial hyperplasia, primary tumor and 

metastasis represented in addition to two cell lines. Samples were harvested from various 

tissue sites within the uterus. Because endometrial hyperplasia increases a patient’s risk of 

developing uterine cancer by 30%,131 we used these hyperplasia samples as putative cancer 

samples. We then labeled them as uterine cancer and checked CancerNets output. CancerNet 

achieved an unweighted F-measure of 85% on this dataset. On all other sites CancerNet achieved 

an unweighted F-measure of 92%. CancerNet produced an unweighted F-measure of 66% on 
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hyperplasia samples, predicting them as uterine cancer in most cases. This indicates that CancerNet 

may be capable of cancer detection even when just precancerous lesions are present. However, 

cancer progression for the hyperplasia patients was not documented in the database and we 

cannot say for certain if this was a correct cancer prediction or not for these precancerous legions. 

To further assess the predictive capability of CancerNet on precancerous samples, we 

used a dataset derived from 55 precancerous ductal carcinoma in situ samples (GEO accession: 

GSE66313). Forty of these samples later developed malignant forms of breast cancer. CancerNet 

identified the “future” cancer samples (40 of 55) with an unweighted F-measure of ~91% and 

“non-future” cancer samples (15 of 55) with an unweighted F-measure of ~66%, demonstrating 

that the model is capable of not only detecting cancer and its tissue of origin but has a 

reasonably high level of predictive capacity for pre-cancers as well without being explicitly 

trained to do so.  

2.3.5 Age-Related Methylation Drift 

Age-related CpG methylation drift is the normal global hypomethylation associated with 

aging132. Some cancer etiologies may be associated with age-related methylation drift 132,133. 

CancerNet may be classifying based on background age-related methylation drift rather than 

methylation changes relevant to carcinogenesis. To verify that this was not the case, we used a 

dataset (GEO accession: GSE113904) with 232 age-stratified normal colon tissue samples. 

Samples were from individuals of age ranging from 29 to 81 years. CancerNet classified all of 

these samples correctly as normal regardless of age. 
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2.4 Discussion 

Here we developed and validated an end-to-end unified model for diagnosing multiple 

cancers. We achieved high performance, 99.6% fmeasure, through all cancer stages with 

robustness to possible confounding factors such as age. Previously published neural network 

classifiers performed approximately as well,115 ~96% f-measure, as CancerNet but lack a latent 

space that can encode complex features already present in the data that lend robustness to our 

model and allow for its possible extension outside the initial use. In addition the model 

presented by Zeng (24) ingests fewer features and predicts on fewer cancer types. While we 

lack the tools to fully characterize the trained latent space it can serve as a foundation for 

future research to develop explainability methods and potentially for discovery of new complex 

combinations of features that may be important for cancer etiology. 

The overall performance of CancerNet on metastatic samples exceeds that of 

pathologists; the correct tissue was the first choice 49% of the time by pathologists,134 in 

contrast, correct tissue was the first choice 91% of the time by CancerNet when evaluated on 

TCGA metastatic cancer samples. CancerNet also substantially outperformed other models that 

perform cancer tissue of origin classification based on DNA methylation106,107 (for all 3 cancer 

types and a normal type investigated by CancerLocator106,107 and 12 of 14 cancer types 

investigated by a model based on random forests,106,107 Supplementary Table 3). Strong results 

in both the metastatic and normal categories demonstrate that the model has learned reliable 

cancer signatures and is capable of tissue of origin detection in cancers that have undergone 

metastasis. Precancerous lesion classification does not fall neatly under the classification task for 

which CancerNet was trained. Due to the transitional nature of precancerous lesions, they could 
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be classified as normal tissue, or predicted as cancerous, which they may become. The 

performance of CancerNet on precancerous samples is promising and is likely the result of the 

latent space prior for the classification task. If more precancerous samples for which the 

progression is known are made available, it may then be possible to add a predictive task to the 

model and train the model for that specific task. Together, the performance across the cancer 

spectrum is consistent and demonstrates the robustness of CancerNet. 

Where efforts have been made to focus on cancer tissue-of-origin detection, some 

studies, surprisingly, have done so without determining whether a sample is cancerous or not. 

Without non-cancerous classes incorporated within a model framework, the model may actually 

learn tissue specific signatures due to the retention of cell specific methylation signatures even 

in carcinogenesis. This approach may thus lead to a model learning normal tissue signatures 

rather than cancer signatures. Therefore, it is pertinent to include normal samples to allow the 

model to learn to discriminate between normal tissue specific signatures and tumor tissue specific 

signatures. We, therefore, included normal samples in CancerNet training and classification and 

ensured that CancerNet’s performance is not an artifact of tissue specific signatures. Assessment 

on different datasets demonstrates that CancerNet is able to robustly diagnose cancer and detect 

the cancer tissue of origin as well.  

Robust tissue level classification is a huge step forward for early cancer detection. 

Indeed, many cancers have no early diagnostic whatsoever. The clinical use of such a model will 

benefit from inclusion of information about tumor evolution and tumor subtypes. Such 

information would aid in treatment decisions and prognosis determination. It is our belief that 

clinical diagnostic is not the only significant use of such a model. Research in cancer biology may 
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be aided by investigating the learned features in the model’s latent space. Such features may 

illuminate complex interactions between multiple mutations and methylation dysregulation in a 

given cellular context. This could provide valuable information about new drug targets. The 

value of this information coming from a unified model cannot be understated as it provides the 

opportunity to find potential targets present in multiple cancers and subdivide tumors in feature 

space rather than in anatomical space allowing discernment of yet unknown aspects of the 

tumor microenvironment and its effects on oncogenic pathways by way of epigenetics. 

Detecting cancer in asymptomatic patients or screening population for cancers requires 

minimally invasive procedures. Current methods of screening body fluids for biomarkers have 

been proposed for use with circulating cell-free DNA, cfDNA.41,135-137 Several studies have shown 

that methylation persists on the fragments of circulating tumor DNA (ctDNA) and is stable 

enough to provide cancer diagnosis and tissue of origin classification.3,138-141 Several key steps 

must be taken to adapt CancerNet for use with ctDNA. Primarily the number of CpG islands 

present in a sample at different stages must be assessed. If the model relies on far more 

features than can feasibly be found in a typical sample, then the model must be adapted to that 

reality. Additionally, circulating cfDNA may come from multiple sources. Presumably the 

majority of DNA fragments could come from cells such as macrophages or other normal tissues 

with good access to the blood that are turned over at a fair rate. Filtering samples to identify the 

ctDNA fragments of interest is a necessary preprocessing step. We expect technological 

advances in cfDNA processing will make possible non-invasive, robust early diagnosis of cancers 

and tissue of origin determination using emerging tools from the field of artificial intelligence 

such as CancerNet. 
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2.5 Abbreviations 

• ACC - Adrenocortical carcinoma 

• BLCA - Bladder urothelial carcinoma 

• BRCA - Breast invasive carcinoma 

• CESC - Cervical squamous cell carcinoma and endocervical adenocarcinoma 

• CHOL – Cholangiocarcinoma 

• CIMP - CpG island methylator phenotype 

• COAD - Colon adenocarcinoma 

• DLBC - Lymphoid neoplasm diffuse large B-cell lymphoma 

• ESCA - Esophageal carcinoma 

• GBM - Glioblastoma multiforme 

• HNSC - Head and neck squamous cell carcinoma 

• HPV - Human papillomavirus 

• KICH - Kidney chromophobe 

• KIRC - Kidney renal clear cell carcinoma 

• KIRP - Kidney renal papillary cell carcinoma 

• LAML - Acute myeloid leukemia 

• LGG - Brain lower grade glioma 

• LIHC - Liver hepatocellular carcinoma 

• LUAD - Lung adenocarcinoma 

• LUSC - Lung squamous cell carcinoma 

• MESO – Mesothelioma 

• NORM - Normal (non-cancer) 

• OV - Ovarian serous cystadenocarcinoma 
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• PAAD - Pancreatic adenocarcinoma 

• PCPG - Pheochromocytoma and paraganglioma 

• PRAD - Prostate adenocarcinoma 

• READ - Rectum adenocarcinoma 

• SARC – Sarcoma 

• SKCM - Skin cutaneous melanoma 

• STAD - Stomach adenocarcinoma 

• TGCT - Testicular germ cell tumors 

• THCA - Thyroid carcinoma 

• THYM – Thymoma 

• UCEC - Uterine corpus endometrial carcinoma 

• UCS - Uterine carcinosarcoma 

• UVM - Uveal melanoma 

  



41 

CHAPTER 3 

DISEASENET: A TRANSFER LEARNING APPROACH TO NCD NONCOMMUNICABLE DISEASE 

CLASSIFICATION MODEL BUILDING 

3.1 Introduction 

Noncommunicable diseases (NCDs) are responsible for approximately 7 in 10 deaths 

worldwide and the total number of deaths due to NCDs in 2021 exceeded all deaths 

attributable to communicable diseases combined. Even when the NCDs are not fatal or terminal 

they contribute to a significant loss in quality of life for individuals affected by them142. Among 

these, asthma, arthritis and schizophrenia (SCZ) can have devastating effects on the quality of 

life, even leading to premature death. Asthma is the most common NCD in children worldwide 

and is the cause of an estimated 455,000 deaths every year143. Ongoing efforts to understand 

the molecular underpinnings of these diseases has relied heavily on genetic data. Epigenetics 

has more recently been implicated in the etiology and identification of NCDs27,31,36,38-40,61,144-146. 

The use of next generation omics based methods in these efforts has produced rich datasets 

that may be leveraged to develop powerful neural network based models of these NCDs. While 

growing, the volume of data available for many NCDs is still too low to train neural networks 

from the available data alone. However, large amount of omics and other data are available for 

some NCD families, such as cancer, which may allow the use of transfer learning to generate 

neural network models of NCDs that lack enough data to build such models. One such type of 

data of interest for disease classification is methylation data, procured from DNA methylation 

sites in the human genome. However, it is yet to be shown that model trained on methylation 

data from one class of NCD, such as cancer, can be used as the basis for models of other NCDs. 
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Machine learning models have been applied to many types of omics data to address a 

variety of biological questions 59,60,147-151. Cancer has been a focal point for many researchers 

and has been powered by some of the largest and well-curated omics datasets available. Non-

cancer NCDs, while actively and passionately researched, generally make up a much smaller 

share of the available disease omics data as of this publication. Due to this, model based NCD 

research is generally limited to a small set of features making it difficult to find interactions 

outside of those features. Additionally, models of non-cancer NCDs tend to be limited to the 

specific disease, or disease family, being researched rather than incorporation of multiple 

diseases within an integrated model. Ideally, emerging models should incorporate larger 

numbers of disease types and rely on larger feature sets. 

We posit that NCDs exist on a landscape. If it is so, then a model trained on one NCD, or 

NCD family, could be extended or retrained on another due to the transferability of information 

learned about one disease to another. Models such as this would allow researchers to find 

common risk factors or understand complex risk factors, which could aid in the discovery of 

biomarkers or development of novel therapies. 

Previously, we had trained a model, CancerNet, on DNA methylation data 148. Here, we 

use transfer learning to train the CancerNet model to identify 3 NCDs; Asthma, arthritis and 

SCZ. To our knowledge, no other models have been produced that incorporate multiple NCDs 

or non-cancer NCDs with cancer samples. 

3.1.1 Noncommunicable Diseases and Methylation 

GWAS studies have revealed genetic loci associated with Asthma 35-37, arthritis 27-34, and 

SCZ 39,152-161 but these loci are responsible for a fraction of the risk61. Epigenetic studies 
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involving gene expression, histone modifications, and methylation have revealed evidence that 

implicates epigenetic risk factors, which may work in concert with genetic risk factors34,61,150,162. 

Each of the three diseases manifests in or affects different tissues. This could make 

modeling even more complicated as the model may learn tissue specific signatures rather than 

disease specific ones. We selected methylation data from peripheral blood samples as these 

were available for all three diseases we chose for this study; further previous studies have 

reported the prevalence of epigenetic signatures of these diseases in peripheral blood samples 

33,36,38,154,160,161,163. Additionally, early risk factors for SCZ were found to be prevalent in 

methylation of peripheral blood cells155,161. 

Other than the large volume of data available for cancer, already known links between 

cancer and other NCDs, such as SCZ, provide evidence that there may be overlapping risk 

factors. This indicates that cancer may exist on the same (epi)genetic landscape as other non-

cancer NCDs. It has been reported that methylation aberrations along with tumor suppressor 

regulatory changes appear to directly link SCZ with cancer rate164. The glucocorticoid receptor 

gene NR3C1 is also implicated in multiple neurological NCDs including SCZ146 and is a predictor 

of poor prognosis in ER- breast cancer165. Indeed, longitudinal studies with second generation 

antipsychotics show that their mechanism is strongly linked to renormalizing methylation 

changes associated with SCZ 159. Links such as these serve to illustrate why the development of 

a pan NCD model through transfer learning is biologically feasible and likely to generate a 

clinically useful model as well as a rich, biologically meaningful, latent space from the data. 

3.1.2 Noncommunicable Disease Detection with Machine Learning 

Research that exploits differential NCD methylation pattern within a neural network 



44 

framework often focuses on one disease or family of disease29,31,32,34,59,60,146,147,149,166. The 

datasets used in each model are small, requiring heavy use of feature selection. This 

unnecessarily limits the scope of the model and limits the information learned by the model. 

Transfer learning that has been underutilized as a modeling tool in this field provides significant 

advantages in that the disease of interest may be understood in the context of other NCDs and 

within a richer information space.  

Transfer learning is a machine learning technique that utilizes information learned by a 

model trained for one task on another task the model has not been explicitly trained for167. 

Generally, the two tasks are expected to be in a similar domain and share low level features167-

170. Because the two tasks are related, the pretrained model is expected to have parameters 

much closer to those needed to perform well in the new task. This means the search space is 

greatly reduced and the new task may be learned with fewer examples171.  

Previously, a model trained on expression data, MultiPLIER, was successfully transferred 

to model other rare NCDs in the expression space118. This was done using an unsupervised 

PLIER network151 and resulted in a model with a rich latent space. Our method differs mostly 

due to the use of methylation as our input data. Methylation is easily detected in the blood due 

to the longer half life of DNA in circulating blood as compared to freely circulating RNA. 

Additionally, RNA is best assessed from a whole cell environment making it limited in its use as 

a diagnostic or predictive dataset in these cases. The methylome, however, is not as well 

characterized and has less prior information to rely on, making it a poor candidate for PLIER 

model training which requires prior information as input to the model. For the reasons 

mentioned above, we here sought to exploit DNA methylation data for NCD classification within 
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a transfer learning framework. To our knowledge this is the first attempt to utilize transfer 

learning to train a multi non-cancer NCD model.  

3.2 Materials and Methods 

3.2.1 Data and Preprocessing  

We obtained methylation datasets of NCDs (accession numbers: GSE36054, GSE41169, 

GSE56553, GSE69270, GSE71841, GSE89251, GSE99863, GSE111942, GSE121192, GSE152027, 

GSE174422) from the NCBI GEO database (https://www.ncbi.nlm.nih.gov/geo/). We used the 

MethylSuite package to download and prepare raw methylation data for each dataset. Each 

sample was put through our processing pipeline to generate 24,565 CpG islands. These islands 

were determined using the method outlined in the CancerNet paper 148 and are as follows. 

When two CpGs were found within 100 base pairs of each other, they were grouped in a 

cluster. If a CpG already in a cluster is within 100 bp of another CpG, the new CpG is added to 

that cluster, i.e. the two clusters are merged. The average beta-value representing the 

methylation intensity was computed for each cluster and then used as the input.  

3.2.2 Model 

We used here the same model architecture as was used in CancerNet 148which utilizes a 

variational autoencoder (VAE) that has a classification task trained at the same time as the 

generative task (Fig. 3.1). All layers are dense layers unless otherwise noted.  

The encoder has 24565 input nodes. The input features are the mean beta values for 

24565 CpG islands that were calculated as described in the data preprocessing section. The 
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encoder is made up of two hidden layers with 1000 and 500 nodes each. This is followed by a 

sampling layer made up of 100 nodes. 

 
Figure 3.1: DiseaseNet Architecture and Transfer Learning Scheme 

From left to right: The process starts with the fully trained CancerNet. The weights are frozen for the 
encoder and decoder. The classification layers are replaced with randomly initialized weights. The center 
picture is the first round of training where only the classifier is trained. Weights of the entire model are 
unfrozen and allowed to train in the last round until convergence. 

 
The sampling layer’s output is then used as input to a classifier and a decoder. The 

classifier has a 100-node layer followed by an output layer that is either 4 or 37 nodes for the 

transfer learning task or the retraining task respectively. The output layer uses a softmax 

activation function. 

The decoder has a 1000-node layer followed by a 24565-node output layer. The output 

of the decoder uses a sigmoid activation function. 

The loss function is the weighted sum of the classifier and decoder individual losses. The 

losses used are categorical cross entropy loss and VAE loss for the classifier and decoder, 

respectively. Weights of 1 and .001 were used for classifier and decoder, respectively. 
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The model was implemented in Keras 122. For a list of dependencies, refer to the readme 

file at https://github.com/Sgore83/DiseaseNet 

For the transfer learning task, the model was initialized with the trained weights from 

CancerNet while the full retrain was initialized with the initial random weights from CancerNet 

to minimize starting state variability. 

3.2.3 Transfer Learning 

The complete data set was divided into training, validation and test sets. The training set 

was 60% of the total data, the test and validation sets were 20% each. CancerNet’s architecture 

and weights were loaded and the final two layers of the classifier’s output were replaced by 

randomly initialized weights for the new classification output size of 4. We then froze the 

weights of the original layers and trained the last two classifier layers until convergence. Early 

stopping with a patience of 100 epochs was used to determine convergence. The weight file 

was only updated when the model improved. 

Fine tuning was then done by making the whole model trainable and training the whole 

model with a learning rate of 1 x 10-6. This second round of training was allowed to train until 

convergence with an early stopping patience of 200 epochs. The weight file was only updated 

when the model improved. 

3.2.4 Binary Classifier Models 

Binary Models for each class were trained using the same architecture as DiseaseNet 

except the classifier output layer which only had a single binary node. For each class, samples 

were labeled using a 1 vs all scheme where any sample not belonging to the target class was 
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labeled as the negative class. 

3.2.5 Performance Metrics 

We assessed the models performance using f-measure which is the harmonic mean of 

precision and recall according to the following formulas 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 

𝑅𝑅𝑃𝑃𝑃𝑃𝑎𝑎𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 

𝐹𝐹𝐹𝐹𝑃𝑃𝑎𝑎𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃 =  
2 𝑥𝑥 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑥𝑥 𝑅𝑅𝑃𝑃𝑃𝑃𝑎𝑎𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝑃𝑃𝑎𝑎𝑅𝑅𝑅𝑅

 

where TP is the count of true positives, TN is the count of true negative and FP is the count of 

false positives. 

3.3 Results 

3.3.1 Transfer Learning 

Our approach to a robust NCD classification was based on the premise that a model 

trained on cancer methylation data contains information that could be leveraged to train a new 

model of non-cancer NCD based on the methylation data. With CancerNet as our initial model, 

we randomly initialized a new classification layer with 4 output nodes (SCZ, Arthritis, Asthma, 

and Normal) and trained only the new layer. We then unfroze the rest of the model and trained 

it with a very low learning rate.  

The resulting model, DiseaseNet, produced a classification f-measure of 94% on average 

and an f-measure of 95%, 98%, 97%, 87% for SCZ, Arthritis, Asthma and Normal classes, 

respectively (Fig. 3.2). 
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As a sanity check, we trained binary classifiers for each NCD and the normal class, 

excluding the step of transfer learning in this process. The performance of these individual 

models serves as a class specific lower bound that is derived from the information contained in 

the non-cancer NCD dataset only. If these models performed as well or better than the transfer 

learning approach, then we could attribute performance largely to the variation between 

individual NCD classes itself rather than to the transfer learning process. The f-measure values 

for the single NCD class models—SZD, asthma, arthritis, and normal models—were 6%, 13%, 

24%, and 86%, respectively (Fig. 3.2). This indicates that in most classes, the transfer learning 

approach added significant information not previously contained in the non-cancer NCD data 

alone.  

 
Figure 3.2: Comparison of Classification F measure for Different Training Schemes 

The blue, orange and grey bars are the f measures of the binary models, 4class model without transfer 
learning and fully trained DiseaseNet (with transfer learning), respectively for each class. In almost all 
cases DiseaseNet did better than the other two but overall DiseaseNet outperformed the other training 
options. 

 
We then trained a 4 class NCD model without transfer learning. This served as a fine-

grained test on the information overlap among classes in the non-cancer NCD dataset. The 
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values of f-measure for the classes were; SCZ: 0%, Asthma: 83%, Arthritis: 85%, Normal: 93% 

(Fig. 3.2). Compared to the binary classification without transfer learning, large improvements 

were observed in all but 1 classes, which demonstrates there is contrastive information 

allowing some classes to improve when the model is provided with this information. The f-

measure value was highest for the normal and further, this was the highest overall accuracy 

achieved for the normal among the three scenarios considered here (binary without transfer 

learning, 4-class without transfer learning, and 4-class with transfer learning). Surprisingly, with 

4-class without transfer learning, the model produced 0% overall accuracy (f-measure) for SCZ, 

that is failed to learn at all for this class. The overall performance of the model, is likely a due to 

learning a suboptimal weight set during model training that sacrifices SCZ performance for 

higher NORM performance. Here, the transfer learning approach performs approximately as 

well as the lower bound for the normal class that was established with the binary classifier but 

improves in all other classes significantly. This indicates that the parameters from a model 

trained on cancer methylation data may be transferred to create an improved model of other 

non-cancer NCDs with less support. 

3.3.2 Model Characterization 

Visual inspection of the latent space shows disease segregation with some overlap 

between normal and SCZ samples, indicating the likely source of misclassifications by this 

model between these two classes (Fig. 3.3a). The segregation observed between classes may be 

attributable to the source type of the different datasets. SCZ and asthma were composed from 

only a single source type, whole blood and peripheral blood mononucleate cells (PMBCs), 

respectively. Normal and arthritis were composed of multiple cell types (Supp. Table 1).  
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Inspecting the latent space based on the sample sources, we found that the source 

types segregated well and did not intermingle (Fig. 3.3b). This is not surprising as samples with 

different cellular makeup are expected to have differing methylomic signatures and should 

occupy different areas of the latent space. The primary question is how important the cell-

specific signatures are to the classification output of the model. 

 
Figure 3.3: Distribution of Samples in DiseaseNet Latent Space 

(a) SCA, Asthma, Arthritis and Norm are colored blue, yellow, green and red respectively. They are well 
separated in the sace with only a few places of overlap by class. (b) Samples are colored by their tissue 
source. This shows a very clear separation between sources leading us to believe that the tissue source 
plays an important role in the classification of the diseases in this model 

 
To investigate this, we leveraged the fact that ‘cell type’ is encoded as a concept vector 

within DiseaseNet. Concepts are high level features of an input that may or may not be 

explicitly trained into the model. A class label in a classification task is a trained concept, though 

not the only one learned, whereas a generative model learns many concepts without the need 

for a label. They are represented within neural networks as vectors in some latent layer. These 
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concept vectors can be detected, and an importance score assigned by a method called TCAV. 

TCAV results indicate how significant a concept, cell source in this case, is to a given class. 

TCAV scores for each class are provided in Supp. Tables 2-5 and source distributions are 

provided in Supp. Table 1. We found that classes have higher TCAV scores (importance) for 

sources from which they were derived, in general. An exception to this is the peripheral 

mononuclear blood cells (pmbc) source. It has low importance in every class for which it occurs; 

arthritis, asthma and normal (Supp. Tables 2-4). In contrast, when classes have samples from 

multiple sources this does little to decrease the importance of the source concept, as can be 

observed in the arthritis TCAV scores where monocyte and CD4+ concepts have high TCAV 

scores, as opposed to the PBMC score which is low in this class (Supp. Table 2). In opposition to 

this, Asthma is the only class for which the only source is PBMC, however PBMC has a low TCAV 

score for this class. Oddly the CD4+ concept is highly important to the asthma class despite not 

being a source for asthma samples. The consistently low TCAV score for PBMC across all classes, 

along with most classes being partly sourced from PBMC, demonstrates the tendency for 

confounding conceptual/contextual information to be minimized when stratified across classes. 

3.4 Discussion 

This study demonstrates the effectiveness of transfer learning in the generation of 

generalizable NCD models. In particular we highlight the potential that such an approach has in 

improving modeling of NCDs with small support sets. DiseaseNet, as described with 4 classes 

here, is a proof of concept that may spur further applications of transfer leaning to disease 

diagnosis and classification. Increasing tissue sources and disease classes is the primary focus of 

our ongoing effort to model the NCD landscape further.  
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We also demonstrated concept-based explanation of our model. It is important to note 

that high TCAV scores are indicative of greater importance of the concept to a class, there may 

be many concepts that are important. Individual concepts do not demonstrate completeness of 

the class concept.  

The TCAV results demonstrate that models such as ours may benefit from a diverse 

tissue source among different diseases. The implication here is that larger and more diverse 

datasets should be obtained, however, this is a known issue among many NCD studies and the 

retrieval of such datasets. Instead, we believe data augmentation of biological datasets would 

greatly improve such models without incurring high costs and efforts/time invested in gathering 

further data from wet lab experiments. Data augmentation has proven highly effective in model 

training in the field of computer vision and it stands to reason that it would positively benefit 

omics modeling as well.  

The field of computer vision is easily understood by human vision and augmentations 

are obvious (such as rotation, cropping and brightness). Omics data, broadly, does not benefit 

from easy human interpretation and the primary issue here is the difficulty in understanding 

which augmentations would be most pertinent and how to apply them in an omics setting. As 

an example, our samples have 24,565 input features. Each is real-valued and many features are 

dependent upon others or at least correlated. It is difficult to understand how to change those 

samples so that we may augment a concept and minimally affect the information that is 

important. We suggest that concept vectors be used in a generative model, such as DiseaseNet, 

to create an augmented sample set. Such sample sets could be easily produced and would 

result in better models. The limitation is that the concept being augmented must be 
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understood well and explained in the context. The explainability methods such as TCAV and 

SHAP may greatly benefit augmentation efforts. 

The VAE portion of models such as DiseaseNet may be used in the training of diffusion 

models in order to generate high fidelity omics samples for improved model training. Here, 

omics models may have a significant advantage over computer vision models in several ways. 

Primarily, the input size is smaller. The input size of computer vision models could be an order 

of magnitude larger than DiseaseNet. Second, the features may not be consistent in a computer 

vision model as the subject content and placement of objects in images changes from picture to 

picture creating a very high degree of variability within image datasets. In DiseaseNet, the same 

input feature always represents the same CpG island. This increased feature complexity and 

input feature size means the training sets for image recognition tasks must be vastly larger than 

those used to train omics models. However, larger omics datasets would still benefit models 

trained on them, if they are well constructed. Thus, while diffusion models in computer vision 

may need trillions of examples to generate reliable outputs, omics diffusion models may need 

far less, due to the lower complexity of the inputs. While this remains to be seen and no 

diffusion model based on omics data has been produced as of the publication of this report, we 

remain optimistic that these models will be the future of model building for the biological and 

medical diagnostic space. 
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CHAPTER 4 

APPLICATION OF LATENT VECTORS FOR DATA AUGMENTATION 

4.1 Introduction 

Data augmentation is the creation of new samples by either iterative optimization or 

sampling of a latent variable 172. Data augmentation is a long practice in model building 173,174. 

As more biological models have been created so have data augmentation techniques that deal 

with the challenges present in biological datasets 175. Omics datasets have presented difficult 

combinations of challenges stemming from inconsistencies in data collection or intrinsic issues 

stemming from data complexity and unobserved hidden dependencies among features.  

With the growing use of neural networks, data augmentation has grown in importance 

as these models thrive of larger datasets. Notably, the computer vision field has utilized data 

augmentation with great success 176-178. Efforts to use neural networks on biological data have 

seen limited use of data augmentation techniques to improve model performance with 

research focusing on single cell RNA, methylation, and SNP data 179-182. All of these efforts focus 

on generating new samples from generative models such as variational autoencoders, 

generative adversarial networks or deep Boltzmann machines. They rely on the variable and 

imperfect nature of the generative process of these models to produce new samples that are 

somewhat different from their authentic counterparts 179,180,183,184. This effort is excellent at 

building datasets that normalize sources of confounding variations such as batch effects but do 

not address the need for missing samples in the population.  

A recent study by Treppner et. al focuses on single cell RNA seq data and isolates latent 

vectors of cell types in the latent space of a variational autoencoder to estimate their 
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contribution to the models training 185. Here they employ the concept of ‘cell type’ to perform 

an explainability study. Studies using concepts found in generative models trained on omics 

data are exceedingly rare185. The success of Treppner et. al demonstrates the power of 

concepts in the omics space. Many other concepts in virtually all omics fields are left 

unexplored. 

The goal of this study is to understand how concepts may be used to augment 

methylation datasets to further the modeling of non-communicable diseases. In doing so neural 

network models may be improved upon for diseases that are rare, understudied, or difficult to 

obtain samples for. All of these scenarios lead to small sample sizes with limited statistical 

power.  

We have previously trained DiseaseNet (chapter 3) by transferring learned latent 

representations of cancer to three other non-communicable diseases; schizophrenia, asthma, 

and arthritis. Here we use that model’s latent space to detect cell type in order to minimize the 

effect that the source of the sample has on the model’s classification output. 

4.2 Methods 

4.2.1 Concept Activation Vectors 

Concept activation vectors (cavs) are directions in the latent space upon which a specific 

concept varies. To determine these, we first labeled all samples that contained a given concept 

using a binary label. We then trained a logistic regression classification model on the activations 

of these samples at the latent layer of DiseaseNet. The cav was defined as the normal of that 

model’s decision boundary. 
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4.2.2 Latent Data Augmentation 

Augmented samples were created by the summation of several vectors derived from 

the latent space; sample activation vectors and one or more concept vector. To change the cell 

type for a given sample, the cav of the sample’s original cell type was subtracted from the 

sample’s activation vector. The cav of the desired cell type was added to the modified sample 

vector. 

4.2.3 Augmented Data Generation 

DiseaseNet was modified so that the latent layer could be fed inputted directly. Then 

modified sample activations produced in 4.2.2 were used as input and the generative output of 

DiseaseNet was used as augmented samples. 

4.2.4 Augmented Data Validation 

We used cosine similarity to determine the similarity of augmented samples and their 

real counterparts when this made sense. We also used cosine similarity to determine how 

similar augmented cavs were to their unaugmented counterparts. 

4.3 Results 

4.3.1 The Impact of TCAV Score on Sample Modification 

Using the cavs for sample source generated (Chapter 3), we altered the latent vectors of 

the training samples. This was done by subtracting the cav of the original sample source and 

adding the target sample source cav. We chose to attempt this in arthritis first because it was 

the only non-normal class that came from multiple sources, allowing us to compare modified 

samples to their authentic counterparts. We first investigated the success of the latent vector 
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modifications by visually inspecting how the modified samples positions in the latent space had 

changed. We found that the distance the samples moved was related to the importance of the 

target sample source to the samples class. The arthritis samples that were modified to contain 

the monocyte vector (Fig. 4.1), which had high importance in arthritis, moved much further 

than the modified pbmc samples, which had very low importance to arthritis. 

 
Figure 4.1: Distribution of Modified Samples in Latent Space 

Latent vectors of arthritis samples arising from CD4+ cells were modified to have monocyte or PBMC 
signatures. The modified samples are plotted in A; the original samples are potted in B. 

 
We observe that the modified samples for monocytes moved much farther than the 

pbmc modified samples did. Their starting point was the CD4 samples, as shown in Figure 4.1B. 

4.3.2 Similarity of Modified and Authentic Samples 

We measured the cosine similarity between augmented samples and authentic samples. 

Again, this was only done for arthritis samples as this class is the only one with multiple sample 

sources. For example, an arthritis sample derived from CD4+ cells that was modified to have the 
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pbmc vector was compared to an arthritis sample derived from pbmc using cosine similarity. 

Modified samples were highly similar to authentic samples from that sample source. We 

observed high cosine similarity, above 80%, regardless of how far an augmented sample moved 

in the latent space. Modified pmbc samples moved the least and had the highest similarity to 

their authentic counterparts. This seems to indicate that the cav vector for pbmc is not present 

in arthritis samples encodings despite pbmc derived arthritis samples being present in the 

training data. This is further evidence that the TCAV score is a measure of magnitude of a cav 

given a sample class.  

4.3.3 Results of Training with Augmented Samples 

To test whether augmenting cell type would affect model performance we trained two 

different models. The first was initialized with DiseaseNets trained weights. We used a transfer 

learning approach as described in 3.2.2 and trained on the same training data used to train 

DiseaseNet with augmented samples added to it. Table 4.2 shows the detailed performance of 

this model. When compared with the original DiseaseNet performance, Table 4.1, no significant 

change in performance can be observed. We felt this was not a surprising result due DiseaseNet 

already being trained on a very similar dataset as the augmented set. We decided to investigate 

the difference in performance from when CancerNet was used to initialize training. Using 

CancerNets trained weights to initialize the model we trained the new model using the same 

dataset as the model initialized with DiseaseNets weights. We used the same transfer learning 

protocol to train this model. This resulted in a new model, DiseaseNet-Aug, that performed 

slightly better on Arthritis and Normal classes but had lower performance in SCZ and asthma, 

Table 4.3, when compared to DiseaseNet, Table 4.1.  
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Table 4.1: Performance of DiseaseNet 

 SCZ Asthma Arthritis NORM 

precision 0.72 1 0.84 0.99 

Recall 0.98 1 1 0.80 

f-measure 0.83 1 0.91 0.89 

support 59 11 21 131 
 

Table 4.2: Performance of DiseaseNet initialized transfer learning with augmented data 

 SCZ Asthma Arthritis NORM 

precision 0.72 1 0.86 0.96 

recall 0.94 1 .95 0.82 

f-measure 0.82 1 0.90 0.88 

support 59 11 21 131 
 

Table 4.3: Performance of DiseaseNet-Aug 

 SCZ Asthma Arthritis NORM 

precision 0.68 0.73 0.87 1 

recall 1 1 1 0.74 

f-measure 0.81 0.84 0.93 0.85 

support 59 11 21 131 
 

4.4 Discussion 

The lack in significant performance improvement is somewhat concerning as it relates to 

the loss in model performance for arthritis and SCZ in DiseaseNet-Aug. It is worth noting that 

SCZ and asthma, the classes that saw lower performance after training with augmented data, 

did not contain any samples from pbmcs or monocytes while arthritis and normal did. The 

calculation of the concept vectors for cell types was done using the difference between a 

random sampling of training data and the samples coming from the cell type class of interest. It 

is possible that due to some cell types being represented in only one disease class the cell 
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source vector may only be represented through those samples. So while they may not be 

entangled, the vectors of disease and cell source may be necessarily similar. In this case, the 

addition of cell source to a different class may introduce information about the class it is most 

represented in. We believe that the similarity scores of augmented and original samples in the 

latent space and between generated and original samples is evidence that the effect of such a 

case may be minimal. However, this is best explored by restricting augmentation to only classes 

with more than one cell source, normal and arthritis in this case, and training from CancerNet. 

By exploring the TCAV scores in these cases we may better understand how to improve concept 

driven latent space augmentation in generative models for omics data. 

The finding that TCAV score is related to the amount a sample moves when a given cav 

is applied to it suggests that the TCAV score is a measure of magnitude for a given cav. If true, 

this would mean that a generalized, unsupervised version of TCAV could decompose clusters of 

samples into their complete complement of concept vectors. The completeness of a set of cavs 

is very important in neural network explainability studies. When a set of concepts is incomplete 

the model may be interpreted incorrectly leading users or engineers to make misguided 

decisions based on that information. If two concepts are entangled but one of those concepts is 

unknown, the model may appear to be less biased or more robust than it actually is. In this 

scenario, the model’s weakness may not be known and could cause catastrophic failure in very 

rare use cases. In medical applications of neural networks this is especially alarming as it has 

implications about health outcomes and general medical trust, which are not entirely 

independent of each other.  
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In addition to these concerns, concept based understanding of models can help answer 

questions about the data needed to improve a model. Such information can be used to guide 

studies on sample selection in a specific and quantifiable manner. By doing so new models may 

be made, or old models improved, in a more efficient manner. Where samples are difficult or 

impossible to collect in the real world, augmented samples may be used in their place to 

improve a model. While this is not the most ideal case, it can be used to incrementally improve 

a model in a directed way while the real world samples are obtained. This is a cheap and fast 

way to address undesirable behavior in a model once it is detected. 
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CHAPTER 5 

DISCUSSION AND OUTLOOK 

Through the work on modeling cancer within a single model we have shown that 

modeling NCDs through neural networks is feasible. In transferring the learned information to 

the problem of modeling other NCDs with less sample support, we were able to improve upon 

weaknesses in existing NCD modeling efforts. By doing so we have provided a pipeline for 

modeling diseases through neural networks. This is significant as neural networks can be used 

to model complex feature interactions, may be easily extended to other problems, and may be 

integrated with other data types more easily than other models.  

Crucially, neural network’s latent representation of samples allows for detection of 

concepts that can be manipulated to improve model function. We proposed a method for data 

augmentation that takes advantage of the rich latent encodings present in neural networks. 

Due to incomplete understanding of omics data, efforts to model such data are hampered by 

biases or errors in the datasets. Correcting such issues may be prohibitively expensive or time 

consuming. In using the latent encodings in neural networks, powerful generative models can 

be utilized to produce high fidelity, realistic samples. While these samples may not fully 

represent missing samples from the population distribution, they can act as a stand in for them 

and are most useful in making erroneous concepts less important to a model’s output.  

While we used methylation data in this study, the concepts and techniques employed in 

this work are not limited to only methylation data and could impact different biological fields 

with varied data types, particularly where synthetic or augmented samples need to be used. 

Fields such as metagenomics often use synthetic datasets as a way to benchmark algorithms. 
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Mixture models are commonplace in metagenomics but are beholden to assumptions about 

the sample source being modeled. Neural networks can learn hidden or unknown dynamics of 

these data and could generate better samples to benchmark on. 

 Our use of VAEs opens the possibility of using multiple encoders to intake multi-omic 

datasets. Traditionally, integrating different types of omic data has been a non-trivial task and 

requires heavy data manipulation. Incorporating data types such as SNP, copy number 

variation, methylation, RNA-seq and/or sequence data requires the integration of three 

different data types (binary, ordinal, and continuous) with different data dependencies (spatial, 

graph, longitudinal). To integrate these data into a non-neural network machine learning 

framework, such as a decision trees or support vector machine, it would need to be 

transformed into one of the datatypes. To do so requires multiple data transformations and 

loss of information. Neural networks and especially VAEs can be used to intake each data type 

independently and then bring the vectorizations of these disparate data into a single latent 

space.  

VAEs are also at the heart of very powerful generative models called latent diffusion 

models 186 that are capable of generating highly realistic images from texts. The ability to cross 

domains, such as from text to image, could be used in biology to generate samples of one type 

from samples of another, such as RNA-seq from methylation samples, exploiting the underlying 

mechanisms that associate these data. This ability could power greater data augmentation 

challenges. The use of such models might also be used for data imputation. Biological data are 

prone to machine errors making it difficult to utilize all the data from a study. When these 

errors occur, researchers are faced with the decision to either repair the data programmatically 
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or remove the data. Imputation techniques of various complexity may be employed but are 

based on methods that could miss long range or complex interactions among features. 

Diffusion models, while not perfect, can handle such long range, complex interactions and 

produce highly realistic outputs when trained. Their use could make imputed and repaired data 

of much higher fidelity. Additionally, diffusion models are capable of being conditioned by 

multiple inputs, it is possible that phenotypic data could be used to refine imputations. It is also 

possible that samples could be generated from clinical description alone, which would give 

researchers a high level of control over synthetic samples with the added advantage of speedy 

generation. 

With the recent publication of the human pangenome 187,188, and in light of the 

significance of epigenomics in NCD detection in this and other works, the development of a 

human pan-epigenome may be an important step forward. Here we have mapped multiple 

diseases and disease subtypes to a latent space. Similar work to detect genetic lineage using the 

pangenome was recently published 187. Development of a pan-epigenome may be important to 

understand disease etiology using similar techniques as heredity studies on the pangenomes 

187. Additionally, the use of such models may form the basis of improved understanding of 

epigenetic regulation.  

In summary, the development and application of neural network based biological tools, 

such as those accomplished in this dissertation study, will empower rapid and deep 

understanding of previously difficult and intractable biological and biomedical problems, and 

we believe, in the context of this study with promising outcomes, the development of such 

tools will accelerate and usher in new ways of preventing, detecting, and treating diseases.  
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