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ABSTRACT 

Evidence for the Regulation of 
Luteinizing Hormone-Sensitive 

Adenylate Cyclase 
By Mono- and Divalent Cations 

Steven David Gore 
1984 

The actions of pharmacologic agents which alter cellular cation levels 

were examined in dispersed, enriched rat luteal cells to determine to what 

extent changes in transmembrane ion gradients or ion fluxes affected the 

response of the luteal cell to luteinizing hormone (LH). Ouabain, which 

depletes sodium and potassium gradients between cells and media by inhibition 

of the Na+ , K+ -ATPase, inonensin, a monovalent ionophore which shows high 

specificity for sodium, and valinomycin, a potassium ionophore, were found to 

produce significant, dose-dependent inhibition of LH-stimulated cAMP ana 

progesterone production. Little effect of these agents was seen on 

unstimulated cAMP and progesterone production. Half-maximal inhibition (ID 

50) for ouabain was about 50 uM and maximal inhibition was about 50% (200 

yM). For monensin, the ID 50 was about 0.1 uM ana maximal inhibition was 

greater than 60% (1 yM); for valinomycin, the ID 50 was less than 10 nM and 

maximum inhibition was about 60% (10 nM). Inhibition by ouabain and monensin 

was not overcome by high doses of LH (1 yg/ml). None of the drugs affected 

cell viability as judged by trypan blue exclusion or release of lactate 

dehydrogenase into the medium. 

Binding and uptake of human chorionic gonadotropin (hCG) by luteal cells 

was not affectea by drug treatment. Ouabain and monensin showed no inhibition 

of basal or LH-stimulatea adenylate cyclase activity in membrane preparations. 





and inhibition of phosphodiesterase by isobutyl methylxanthine did not reverse 

the inhibitory effects of the three drugs. Ouabain and monensin inhibited 

progesterone accumulation in response to dibutyryl cAMP, while valinomycin had 

no effect on post- cAMP events in steroidogenesis. Incubation of cells in 

medium in which sodium was replaced by choline completely reverse the 

inhibition due to ouabain or monensin, while valinomycin was still inhibitory 

in the absence of extracellular sodium, consistent with the known 

pharmacological actions of these drugs. 

Stimulation of luteal cAMP accumulation by cholera toxin was unaffected by 

ouabain treatment; however, monensin significantly inhibited cholera 

toxin-stimulated cAMP accumulation. Forskolin, which stimulates mammalian 

adenylate cyclase systems by interaction with the catalytic subunit, 

significantly increased luteal cAMP production but had a much less pronounced 

effect on steroidogenesis. Ouabain and prostaglandin (PG F^a) did not 

inhibit cAMP accumulation in response to forskolin, although monensin showed 

significant inhibition. Like PG F^, ouabain appears to inhibit coupling of 

the hormone-receptor complex to the catalytic subunit of adenylate cyclase. 

Monensin inhibition appears to be at the catalytic subunit, although proximal 

sites of inhibition are also possible. 

Luteal cell response to LH did not appear to require acute sodium influx 

as substantial reduction of extracellular sodium (to 32 meq/1) had no effect 

on LH stimulation; tetrodotoxin (1 pM) was also without effect. Reversal of 

the sodium gradient by substitution of choline for extracellular sodium led to 

30% inhibition of LH-stimulated cAMP accumulation. Depolarization of luteal 





cells with high concentrations of extracel 1 ular potassium (66 meq/1) did not 

affect LH-stimulation. Incubation of cells in Ca++ -free medium decreased 

unstimulated cAMP levels and blunted the cAMP response of cells to LH. 

Neither ouabain nor monensin were inhibitory in the absence of extracellular 

calcium. Inhibition by low doses of ouabain or monensin was super-additive 

with low doses of PG F„ . It is possible that PG F„ shares a common 
2 a 2 a 

pharmacological mechanism with ouabain and monensin; this may be an increase 

in free cytoplasmic calcium. Combinations of maximal doses of PG F^a and 

maximal doses of ouabain or monensin were less inhibitory than either agent 

alone. The antigonadotropic effect of PG F^a did not require extracellular 

sodium. 

It is concluded that the response of luteal cells to LH is critically 

dependent on maintainance of normal ionic gradients. Pharmacologic maneuvers 

which increase intracellular calcium appear to inhibit the response of luteal 

adenylate cyclase to LH. Since the LH response is blunted in the absence of 

calcium, the details of calcium-cAMP interaction in the luteal cell are likely 

to be complex; such interactions may play a crucial role in luteolysis which 

is initiated by suppression of LH-stimulated cAMP accumulation and 

progesterone secretion. 
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1. 
INTRODUCTION 

Maintainance of a secretory endometrium which can support a developing 

embryo requires the steroid hormone, progesterone, which is synthesized by the 

cyclically formed corpus 1uteum. In the absence of fertilization and 

implantation, serum progesterone concentrations fall, the endometrium is 

sloughed, and a new estrous cycle begins. The corpus luteum has a critical 

role in maintaining pregnancy and in regulating the estrous and menstrual 

cycles. A primary function of this organ is the production of steroid 

hormones, predominantly progesterone. 

The cessation of progesterone secretion and gradual involution of the 

gland in the absence of pregnancy are essential for the beginning of a new 

cycle and ovulation. Consequently, the control of the steroidogenic apparatus 

of the corpus luteum is central to the regulation of mammalian reproductive 

cycles. 

The factors which maintain the corpus luteum vary among species, however, 

prolactin and luteinizing hormone (LH) are required to a greater or lesser 

extent in most species (1,2). The rat corpus luteum requires an intact 

pituitary to maintain steroidogenesis; both hypophysectomy and treatment with 

2-Br-ergocryptine, a prolactin secretion inhibitor, prevent progesterone 

secretion (1,2). Treatment with exogenous prolactin will maintain corpus 

luteum function after hypophysectomy, however prolactin does not itself 

stimulate steroidogenesis (1). Prolactin is thought to be a permissive 

luteotropin, facilitating progesterone production without determining the rate 

of release of the hormone (2). The cellular mechanism of prolactin action is 

not well understood; however, prolactin helps maintain levels of cholesterol 





2. 
ester synthetase and cholesterol esterase, enzymes involved in the 

maintainance of adequate substrate levels for steroidogenesis (3). Prolactin 

also inhibits synthesis of 3$ -and 20a- steroid dehydrogenases, enzymes which 

metabolize progesterone to inactive products (4). Prolactin also plays a role 

in maintaining luteal receptors for LH, enabling the organ to respond to this 

trophic hormone (5,6). 

On days 6-9 of pregnancy, prolactin will no longer sustain corpus luteum 

function in hypophysectomized rats unless supplemented by LH (1). After 8 

days, LH is the predominant luteotropin (1,7). In contrast to prolactin, LH 

is a stimulatory luteotropin which determines the rate and extent of 

progesterone production in a direct, dose-dependent fashion (2). Like those 

of many peptide hormones, the actions of LH are thought to be mediated by cAMP 

(8). Fulfilling Sutherland's criteria for a cyclic AMP - mediated system (9), 

LH increases cAMP accumulation by the corpus luteum, and both exogenous cAMP 

and phosphodiesterase inhibitors stimulate luteal steroidogenesis (8). 

Membranes prepared from corpora lutea exhibit adenylate cyclase activity which 

can be stimulated by LH (10). 

Although cyclic AMP mimics the steroidogenic effects of LH, the precise 

relationship between LH, cAMP, and luteal steroidogenesis remains unclear. 

Marsh and colleagues demonstrated a dissociation between the dose-response 

curves for the stimulation of progesterone accumulation and cAMP accumulation 

by LH (11). In particular, progesterone accumulation was stimulated by a 

concentration of LH which was a full order of magnitude less than that 

required to detect a significant increase in cAMP accumulation. Similar 

dissociation of cAMP and steroid accumulation has been noted for ACTH 





3. 
stimulation of the adrenal, LH stimulation of testis, and TSH stimulation of 

thyroid (8). Three mechanisms have been invoked to explain this 

dissociation. The spare receptor hypothesis postulates that only a small 

percentage of hormone receptors need to be occupied for a fractional 

activation of adenylate cyclase to maximally stimulate progesterone 

accumulation. The bulk of receptors and adenylate cyclase molecules are, in 

effect, a spare pool, guaranteeing that the cell will respond to low levels of 

hormone. The second hypothesis is that hormone binding induces formation of a 

small amount of cAMP which is not detectable above baseline levels, but which 

is confined to a small intracellular compartment with priveledged access to 

steroidogenic machinery. The third hypothesis states that cAMP-dependent 

protein kinase can be activated by an undetectable increase in cellular cAMP 

(8,11,12). This issue has not been resolved experimentally, and it remains 

possible that there are other intracellular messengers which mediate the 

steroidogenic effects of LH. It is also conceivable that cAMP formed at 

higher doses of hormone serves other, as yet unidentified, cellular 

functions. 

The production of cyclic AMP is the end result of interaction of a complex 

of integral membrane proteins, together known as adenylate cyclase, and 

currently thought to consist of three components. The catalytic moiety, 

responsible for enzymatic conversion of ATP to cAMP, is inactive unless 

activity is conferred by a second protein, know as G/F or N. This "coupling 

protein" possesses GTPase activity and is the site of activation of adenylate 

cyclase by fluoride ion and by cholera toxin. In the presence of guanine 

nucleotides, N enables the hormone-receptor complex to activate the catalytic 
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subunit. There is considerable debate about the details of the coupling 

mechanism (13). 

Although early studies suggested that the luteal cyclase system might 

differ from other mammalian cyclases in significant ways, the luteal enzyme 

now appears to be quite similar. Like other cyclases, luteal adenylate 

cyclase in membrane preparations demonstrates a requirement for ATP and 

magnesium ion (10). The luteal enzyme exhibits considerable basal activity 

and is stimulated 2-4 fold by LH, prostaglandin and epinephrine (10). In 

contrast to other cyclase systems, a requirement for guanine nucleotides for 

hormonal stimulation was not demonstrated originally (10). More recent 

studies have demonstrated that guanine nucleotides control basal activity of 

luteal adenylate cyclase as well as the responsiveness of the enzyme to 

hormones. In the absence of guanine nucleotides, LH, human chorionic 

gonadotropin (hCG), and isoprotereno I caused only a marginal stimulation of 

cyclase, whereas addition of GTP or GTP analogues led to a 3-4 fold 

stimulation by hormones (14). Additionally, early studies concluded that 

hormonal sensitivity of the luteal cyclase showed marked dependence on ATP 

concentration (10); recent studies indicate that this effect is due to the 

buffering of the magnesium concentration by ATP. Activation of luteal cyclase 

appears to be extremely sensitive to the concentration of free magnesium ion; 

addition of substances such as ATP and inorganic phosphate which act as 

magnesium buffers in the 10- 100 uM range permit stimulation of cyclase over a 

broader range of added MgC 1 ^ (14). The effects of LH and isoproterenol on 

. cyclase activity are not additive. This indicates that there is only one form 

of catalytic subunit of luteal cyclase, which is activated by various occupied 

hormone receptors (14). 
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Although it is presumed that luteal steroidogenesis is stimulated by a 

cAMP-dependent protein phosphorylation, the details of this process are not 

completely understood. Attention has focussed on two loci for stimulation of 

steroid production: the availability of free cholesterol to act as a substrate 

for mitochondrial pregnenolone production, and the rate of the cholesterol 

side chain cleavage reaction (CSCC) which forms pregnenolone from 

cholesterol. CSCC is the rate-limiting reaction in steroidogenesis (15). 

Behrman and Armstrong demonstrated an increase in cholesterol esterase 

activity in luteinized ovaries from rats treated with LH (16). Administration 

of LH reduced luteal cholesterol ester concentration in control rats and in 

rats treated with aminoglutethimide, an inhibitor of CSCC (17). This 

indicated that LH could mobilize substrate stored as cholesterol ester, even 

when CSCC was inhibited, preventing metabolism of cholesterol. Caffrey and 

colleagues showed that luteal cholesterol esterase activity in cell 

homogenates was stimulated by dibutyryl cAMP ( (BuJ^cAMP) in the presence 

of magnesium and ATP, suggesting that the esterase was stimulated by an 

endogenous protein kinase (18). In addition, cholesterol esterase activity 

measured during the estrous cycle correlated well with serum progesterone 

levels and luteal tissue progesterone (18). 

Curon et al solubilized the cytochrome P450 system from bovine corpora 

1utea mitochondria and reconstituted the CSCC using purified components from 

adrenal cortex. Addition of protein kinase partially purified from bovine 

corpora ,1 utea increased conversion of cholesterol to pregnenolone in the 

presence of ATP and cAMP (14). Downing and Dimino added partially purified 

protein kinase from a crude preparation of CSCC complex from porcine luteal 





6. 
mitochondria and noted an increase in cholesterol conversion activity (20). 

Mori and Marsh studied cholesterol metabolism in mitochondria of rat corpora 

lutea. In rats treated with aminoglutethimide, LH treatment increased 

mitochondrial cholesterol, in agreement with previous studies. In the absence 

of inhibitor, LH decreased cholesterol levels, suggesting that the hormone 

also promoted cholesterol metabolism. An increase in CSCC activity after LH 

treatment was indeed observed. These investigators further demonstrated that 

the initial rate of cholesterol conversion did not correlate with 

mitochondrial cholesterol concentration. In addition, the rate of conversion 

was slowed markedly without depletion of the majority of mitochondrial 

cholesterol. The authors postulate that LH treatment not only increased 

mitochondrial cholesterol and CSCC activity, but increased the fraction of 

cholesterol which was available for steroidogenesis (21). 

Regression of the corpus lutuem, or luteolysis, is marked by a sharp 

decrease in serum progesterone, and increased secretion of its metabolite 

20a-hydroxyprogesterone. Biochemical signs of luteolysis are followd by 

histological changes indicative of organ involution (22). Luteolysis in the 

rat can be induced by administration of prostaglandin F^ (PG F^), and 

there is considerable evidence that PG F9 is the predominant luteolytic 

signal in the rat and many other species (23). PG F9 is thought to be 

synthesized in the uterus and transferred to the ovary via counter-current 

exchange between the uterine vein and ovarian artery (23). There is evidence, 

however, that the rat corpus luteum contains prostaglandins and can synthesize 

them (24,25). It is possible that both organs contribute physiological ly 

important prostaglandins. 
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PG antagonizes the ability of luteal cells to increase cAMP 

accumulation in response to luteinizing hormone. This was initially shown by 

Grinwich et al who demonstrated that coincubation of rat luteal slices with PG 

F0 and LH diminished the rise in cAMP seen with LH alone (26). These 
2a 

results were confirmed by Lahav et al. working with intact corpora lutea in 

culture (27). In isolated luteal cells, PG F0 stimulates basal 
' ' £OL 

progesterone accumulation but antagonizes the ability of LH to increase cAMP 

and progesterone accumulation (28). PG a^so diminishes progesterone 

accumulation in response to (Bu)t>cAMP, indicating that PG F^ inhibits 

steroidogenesis at two loci: formation of cAMP, and post-cAMP steroidogenesis 

(29) . PG F^a completely inhibits steroidogenesis in response to cholera 

toxin but only partially reduces cAMP accumulation in response to the toxin 

(30) . 

PG F0 does not affect binding of [125I]-hCG to luteal cells (29) nor 
C- OL 

does it affect the ability of LH to stimulate adenylate cyclase in luteal 

membrane preparations (31). When membranes were prepared from corpora lutea 

which had been incubated in vitro with PG F0 for 15 to 60 minutes, both 
c a 

basal and LH-stimulated adenylate cyclase activity was reduced; moreover, 

fold-stimulation by LH was reduced by approximately one half (32). Thus, 

while PG F0 does riot appear to have a direct effect on LH-stimulated 
c a 

cyclase in membrane preparations, the prostaglandin may induce cellular 

changes which modulate the responsiveness of the enzyme complex to LH. In 

addition to the biochemical changes seen in response to acute treatment with 

PG F^ , later changes induced by administration of prostaglandin to rats 

include decrease in uptake of hCG and prolactin by corpora lutea (6), a 
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decrease in LH receptors (33), and decreased blood flow to the corpus luteum 

(34). 

Other factors are known to modulate the responsiveness of the corpus 

luteum to LH. Clayton et al reported that an agonistic analog of gonadotropin 

releasing hormone (GnRH) was bound specifically to dispersed rat luteal cells 

and inhibited hCG-stimulated progesterone secretion (35). Subsequent studies 

by Behrman et al. demonstrated that GnRH and agonistic analogs antagonized 

LH-stimulated cAMP and progesterone accumulation in rat luteal cells (36). 

Like prostaglandin, GnRH did not affect hCG binding to luteal membranes or LH- 

stimulated adenylate cyclase in membrane preparations (36). LH-stimulation of 

cAMP and progesterone accumulation has been found to be amplified by adenosine 

and other purines (37). Adenosine had little effect in the absence of LH and 

was able to reverse PG a inhibition in an apparently competitive manner 

(38). Unlike purine stimulation of adenylate cyclase in other cell types in 

which adenosine stimulates cyclase via a membrane receptor exposed to the 

extracellular space (39), adenosine stimulation in luteal cells requires 

intracellular uptake of adenosine (37). The dose-response and time course 

characteristics of purine amplification of LH action correspond to the ability 

of these compounds to stimulate cellular ATP levels, suggesting that 

increasing substrate availability for cyclic AMP synthesis may be one 

mechanism by which purines exert their effect (40). The physiologic 

importance of GnRH and purine modulation of luteal function is still 

speculative. 

The response of the luteal cell adenylate cyclase and steroidogenic 

apparatus to luteinizing hormone is clearly modulated by many factors. The 
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plasticity of the luteal cell response to LH may well confer upon the corpus 

luteum its ability to regulate the post-ovulatory events of the mammalian 

reproductive cycle. The serum levels of LH and prolactin do not decrease at 

the time of physiologic luteolysis (41); local factors must be responsible for 

the early stages of luteolysis. 

The mechanisms by which the paracrine regulators modulate the cellular 

response to LH are unknown. As discussed above, neither PG nor GnRH 

affect hCG binding to the LH receptor, nor do they affect stimulation of 

adenylate cyclase by LH in membrane preparations. Further, incubation of 

luteal tissue with PG F„ before preparation of membranes decreases 
2 a 

LH-stimulated cyclase activity in membranes. It would appear that cellular 

integrity is required for modulation of LH stimulation. X-ray diffraction 

studies of rat and bovine microsomal membranes prepared from corpora lutea 

have shown that in vivo treatment with PG F0 leads to an increase in the 

transition temperature of the membranes, indicative of a decrease in membrane 

fluidity (42,43,44). The authors of these papers have postulated that PG 

F^a decreases membrane fluidity, thereby restricting lateral diffusion of 

membrane proteins and perhaps preventing interaction of the three components 

of adenylate cyclase. How this apparent fluidity change arises is uncertain; 

lipid composition of the membranes was apparently unchanged (43). 

Confirmation of membrane fluidity changes upon PG F^ treatment in cells 

would help clarify whether this might be an important mechanism in PG F9 - 

induced luteolysis. 

Dorflinger and Behrman have reported that treatment of luteal cells with 

the calcium inophore A23187 inhibits cAMP and progesterone accumulation in 





response to LH. Additionally, millimolar doses of calcium inhibit 

LH-stimulated cAMP accumulation in membrane preparations (31). These 

investigators have suggested that PG action is mediated by calcium 

influx or by mobilization of intracellular calcium. Substantial evidence 

indicates that pituitary gonadotropin release induced by GnRH is mediated by 

calcium influx (45). Although GnRH mimics the inhibitory actions of PG 

on luteal cells, experiments with slices of luteal tissue have suggested that 

depolarization of luteal cells actually increases steroidogenesis in a 

calcium-dependent manner (46). In porcine granulosa cells, removal of 

extracellular calcium diminishes LH-stimulated cAMP and progesterone 

secretion, and treatment with A23187 augments LH-stimulated steroidogenesis 

(47). 

The experiments in this thesis were designed to further elucidate the 

importance of transmembrane ion flux and membrane potential to the response of 

luteal cells to LH. The effects of three pharmacologic agents which perturb 

normal ionic gradients have been studied. The cardiac glycoside ouabain, by 

inhibiting the Na+, K+ -ATPase, allows sodium and potassium to diffuse 

according to their electrochemical gradients. Monensin is a monovalent 

cationophore with high selectivity for sodium (48). Valinomycin is a 

potassium ionophore (48). 





11. 
MATERIALS AND METHODS 

ANIMALS 

Immature (26-27 days old) female rats (CD strain, Charles River 

Laboratories, Wilmington, Massachusetts) were injected subcutaneously with 50 

IU pregnant mare serum gonadotropin (Gestyl, Organon Pharmaceuticals, West 

Orange, New Jersey). Sixty hours later, 25 IU human chorionic gonadotropin 

(hCG) (A.P.L., Ayerst Laboratories, Rouses Point, New York) was injected. 

DISPERSION, ENRICHMENT AND INCUBATION OF LUTEAL CELLS 

Isolated luteal cells were prepared as described by Thomas et al. with 

some modifications (28). All media used for cell dispersion and incubation 

contained bovine serum albumin (Fraction V, Calbiochem, La Jolla, California) 

at a concentration of 0.1%. Ovaries were removed 4-6 days following hCG 

injection, minced by razor and dispersed in 5 ml calcium-free MEM (Medium 1, 

1380, Grand Island Biological Company, Grand Island, New York), containing 

2000 IU collagenase (Worthington Biochernicals Corporation, Freehold, New 

Jersey) and 3000 IU deoxyribonuclease (Worthington) per g tissue for 1 h at 

37° under 95% 0^ - 5% CO^. The cells were centrifuged for 5 min. at 100 

X g and resuspended in medium 1 containing EDTA (1.1 mM) for two minutes and 

recentrifuged. The supernatant was discardea, the cells were resuspended in 

medium 1 and filtered through nylon mesh (Nyten, Tetko, Inc., Elmsford, New 

York). The cells were again centrifuged for 5 min. and the pellet resuspended 

in 1.5ml medium 1. 

The luteal cell population was enriched by centrifugation on a 

discontinuous density gradient (Percoll, Pharmacia Fine Chemicals, Uppsala, 
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Sweden) at room temperature as described (36). The cells present within the 

density layers of 1.018 and 1.003 g/ml were aspirated and pooled and washed 

with 12 ml medium 1, then centrifuged at 100 X g for 10 min. The cells were 

resuspended in MEM with 25 mM HEPES and Earles' salts (medium 2, 2360, Grand 

Island Biologicals Co.). Based upon size and lipid inclusions, luteal cells 

comprised more than 80% of total cells and virtually no blood cell 

contamination was evident. Cell number was determined with a hemacytometer 

and cell viability was greater than 90% as assessed by the trypan blue test 

(49). 

4 
Cells were incubated in 12 X 75 mm glass culture tubes at 8 X 10 to 1.2 

5 o 
X 10 cells/tube in a final volume of one ml medium 2 at 37 under an 

atmosphere of 95% 0^-5% C0^. Additions of hormones and drugs as indicated 

in the text were made in medium 2. After various incubation times the culture 

tubes were immersed in a boiling water bath for 10 min. and stored at -20°C 

until analyzed. 

In experiments in which the sodium concentration was altered, medium 2 was 

prepared in which all sodium salts were replaced isotonically with choline 

chloride. The composition of other salts, amino acids and vitamins was 

identical to MEM with Earle's salts (medium 2). Cell suspensions were divided 

into aliquots and centrifuged at 100 X g for 5 min. The medium was discarded, 

and the cells were resuspended in prepared media with various sodium 

concentrations. After incubating for 5 min at 37°, the cells were 

recentrifuged, and the washing procedure repeated. 
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ADENYLATE CYCLASE ASSAY 

LH-sensitive adenylate cyclase activity was assayed essentially as 

described by Birnbaumer (20) with modification for RIA as described earlier 

(37). Membranes were prepared from ovaries removed 7-8 days following hCG 

injection by homogenization at 0°C in a buffer containing 27% sucrose, 1 mM 

EDTA, 10 mM Tri s HC1, pH 7.5, at 5 ml/g tissue. The homogenate was filtered 

through nylon mesh (Nyten, Tetko, Inc.) and centrifuged at 1000 X g for 10 min 

at 4° C. The supernatant was recentrifugea at 10,000 X g for 30 min. The 

pellet was resuspended and quick frozen in dry ice-isopropanol and stored at 

-70° C. 

For assay, membranes were thawed and centrifuged at 10,000 X g for 30 min 

at 0° C. The pellet was resuspended at 7 ml/g tissue and 40 yl membrane 

suspension was incubated in a final reaction mixture volume of 100 yl. The 

final concentrations of reagents were: 10.8% sucrose, 4 mM Tris HC1, 15 mM 

bis-tris-propane, pH 7.5, 1 mM EDTA, 20 mM creatine phosphate, 0.2 mg/ml 

creatine phosphokinase, 0.1 mg/ml myokinase, 2 mM MgCl^* 0.01% bovine serum 

albumin. Additions of other drugs and hormones are indicated in the text. 

The reaction was initiated by addition of ATP (final concentration 3 mM) and 

incubated at 37°C for 10 min. The incubation was terminated by placing 

tubes in boiling water for 10 min. Aliquots were removed and assayed for cAMP 

by RIA as indicated below. 

ASSAYS OF cAMP AND PROGESTERONE 

The RIA of cAMP was based on the procedure of Steiner (50) using a kit, 

(Schwartz/Mann, Orangeburg, New York). The assay was sensitive to 0.1 pmol 
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with minimal cross reaction to other nucleotides (ATP, 0.0001%, AMP 0.001%, 

cGMP 0.01%). Progesterone production was assayed by RIA as described 

previously (51). 

IPS 
BINDING AND UPTAKE OF [ ^IJ-hCG TO LUTEAL CELLS 

125 
Binding studies were performed as described earlier (36). [ I]-hCG 

was prepared by the lactoperoxidase method as described earlier (33). Tracer 

5 
was diluted in medium 2 and added to 1-3 X 10 cells in a final volume of 

0.5 ml in 12 X 75 mm glass culture tubes. Other additions are described in 

the text. Cells were incubated for 3 h at 37°C under 95%02~5% CO^; 2 ml 

medium 2 was added to each tube, and the cells were centrifuged at 100 X g for 

5 min. The supernatant fraction was aspirated and the radioactivity in the 

pellet determined. Non-specific binding was defined as radioactivity 

associated with cells incubated in the presence of 1000 mill hCG. 

OTHER ASSAYS 

Lactate dehydrogenase activity was assayed in medium or in cells lysed 

hypotonically by the spectrophotometric assay of Wacker (52) using a kit 

(Statzyme, Worthington). Cell viability was also assessed using the trypan 

blue method (49). Protein was assayed by the Bradford method (53). 

HORMONES, DRUGS, AND REAGENTS 

Ovine LH (NIADDK - oL H 23)was a gift from NIH (Bethesda, Maryland). oLH 

was dissolved in 10 mM Tris HC1, pH 7.5, with 0.1% BSA, at 100 ug/ml. 

Aliquots were stored at -70°C. hCG (A.P.L., Ayerst Laboratories) was 
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dissolved in 40 mM Tris HCl pH 7.4 with 5 mM MgSO^ at 1000 IU/ml and 

aliquots were stored at -4°C. Ouabain and valinomycin were purchased from 

Sigma (St. Louis, Missouri) and monensin was purchased from Calbiochem. 

Cholera toxin was purchased from Sigma, and forskolin from Calbiochem. 

Adenylate cyclase assay reagents were from Sigma. PG F^ tromethamine salt 

was a gift from Dr. John Pike (Upjohn Co., Kalamazoo, Michigan). 

4 mM stock solutions of ionophores were prepared in ethanol and stored at 

-4°C. Ionophores were diluted in medium 2 before addition to cells, and 

final concentration of ethanol never exceeded 0.01%. Solutions of ouabain 

were made in medium 2 on the day of the experiment. Forskolin was dissolved 

in ethanol (10 mM) and stored at -4°C. 

STATISTICAL ANALYSIS 

Luteal cells from several animals were pooled and samples of equal numbers 

of cells were exposed to various treatments within an experiment. Data are 

reported as the mean + SEM for four replicates of representative experiments. 

The two-tailed t test for paired data was used to test differences between 

samples. Pairs were based on the sequence of replicate incubations within 

each treatment group. 
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RESULTS 

Preincubation of dispersed, enriched luteal cells with ouabain caused 

significant, dose-dependent inhibition of LH-stimulated cAMP and progesterone 

accumulation (Figure 1). Maximal inhibition of LH-stimulated cAMP and 

progesterone accumulation was about 50% at a ouabain concentration of 200 yM. 

Half-maximal inhibition occurred at 50yM ouabain. In Figure 2, dose-response 

curves of ouabain inhibition of cAMP and progesterone accumulation in the 

presence of increasing doses of LH are plotted. No consistent effect of 

ouabain was seen on unstimulated cAMP or progesterone accumulation, although 

occasional, slight inhibition or stimulation was observed. Ouabain inhibition 

was greatest at low doses of LH (71.5% at LH = 10 ng/ml) but was still 

significant at high doses of LH (35% at LH = 1000 ng/ml). A plot of the 

reciprocal of cAMP accumulation against drug concentration with 10 and 100 

ng/ml of LH illustrated that ouabain inhibition of LH-stimulated cAMP 

accumulation was competitive with a of about 20yM (90). The estimated 

K.. for ouabain inhibition of LH-stimulated progesterone secretion was 10-15 

uM. This value was obtained from a plot of the reciprocal value of maximal 

progesterone secretion against the concentration of inhibitor, based on the 

assumption that inhibition was competitive. Although lower, the K. for 

inhibition of progesterone secretion compares reasonably well with the 

for inhiDition of cAMP accumulation. In early experiments, cells were 

incubated with ouabain for 1 h before the addition of LH, however, identical 

inhibition was seen with 10 min. preincubation (see Table 4), and in later 

experiments, 20 min. preincubations of cells with ouabain were used 

routinely. 
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Incubation of cells with 100 yM ouabain for 2 h did not affect cell 

viability as judged by the exclusion of trypan blue or by the release of the 

cytoplasmic enzyme, lactate dehydrogenase (data not shown). The reversibi1ity 

of ouabain inhibition was tested in the following manner. Cells were incubated 

with ouabain (100 uM) for 15 min., the media was removed following 

centrifugation (100 x g, 5 min.), the cells resuspended in fresh medium with 

or without ouabain, and incubated for an additional 5 min. The washing 

procedure was then repeated, the cells were resuspended in media with or 

without ouabain, LH was added 5 min. after resuspension of the cells, and the 

incubation was continued for 90 min. As shown in Table 1, inhibition of cAMP 

accumulation was 67 + 7% in the treated samples and 37 + 4% in the washed 

samples. In a separate experiment, inhibition of progesterone accumulation 

was reduced from 76 + 3% in the samples which were washed and retreated to 18 

+ 3% in the washed samples. The differences between washed and retreated 

samples were significant (p<0.05). 

There are several loci at which ouabain might inhibit LH-stimulation, 

including: binding of hormone to receptor, interaction of hormone-receptor 

complex to the N subunit of adenylate cyclase, interaction of the subunit with 

the catalytic moiety of the enzyme, or at the catalytic subunit directly. 

Inhibition could also be mediated by an increase in phosphodiesterase 

activity. Additionally, progesterone accumulation could be inhibited at sites 

distal to cAMP accumulation. Several experiments were performed to assess to 

possible site of inhibition by ouabain. 

First, the effects of ouabain on the binding and uptake of hormone by 

cells was tested. Cells were incubated with ouabain (100 yM) for 20 min. 
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before addition of [ I]-hCG and various amounts of unlabeled LH. 

Incubation and determination of bound radioactivity then proceeded as 

described in Methods. Treatment with ouabain had no significant effect on the 

binding of labeled ligand or on competition for binding with unlabeled hormone 

(data not shown). Ouabain treatment therefore, does not appear to affect 

interaction of hormone with receptor. 

Next, the effect of ouabain on adenylate cyclase activity was studied in 

membrane preparations as described in Methods. Table 2 demonstrates that 

ouabain (100 yM) had no significant effect on either basal or LH-stimulated 

adenylate cyclase activity in membrane preparations. 

The possibility that ouabain treatment decreased cAMP accumulation by 

increasing metabolism of the nucleotide was also considered. Cells were 

preincubated in the presence or absence of the cyclic nucleotide 

phosphodiesterase inhibitor isobutyl methylxanthine (IBMX, lOO^M) for 10 

min. Ouabain (100 uM) was then added, and incubation continued for an 

additional 20 min. before the addition of LH (100 ng/ml); the cells were 

incubated with LH for 90 min. If ouabain treatment depended on an increase in 

phosphodiesterase activity for its inhibitory effects, treatment with IBMX 

should reverse the inhibition. In cells treated with IBMX, ouabain inhibition 

of LH-stimulated cAMP accumulation was 45 + 2%. Thus, ouabain did not appear 

to exert its inhibitory effect through increased metabolism of cAMP. 

Although ouabain inhibited cAMP and progesterone accumulation in a 

parallel manner, it is possible that inhibition of progesterone production 

occured at a site distal to cAMP accumulation. To test this possibility, 

cells were treated with the membrane permeable cAMP analogue dibutyryl cAMP 





19. 
( (Bu)2-cAMP) after a 20 min. preincubation with ouabain (100yM); tne 

incubation was allowed to proceed for 90 min. As shown in Figure 3, 

progesterone accumulation in response to (Bu^-cAMP) was significantly 

inhibited in cells pretreatea with ouabain; maximum response to (Bu^-cAMP 

5 5 
was 55 + 1.5 ng./10 cells in the absence of the drug and 29+; 0.5 ng/10 

cells in its presence. 

In most tissues, pharmacologic effects of ouabain are attributed to the 

glycoside's ability to inhibit the Na+, K+-ATPase (54). Inhibition of 

this pump allows sodium and potassium to diffuse across the plasma membrane 

according to their electrochemical gradients. Because ouabain treatment 

diminishes both the sodium and potassium gradients, it was of interest to 

consider whether selective interference with either gradient similarly 

affected cellular responses. To this end, two ionophores, monensin and 

valinomycin, were tested for their ability to inhibit LH-stimulated cAMP and 

progesterone accumulation. Monensin is a polyether monovalent cationophore 

with high selectivity for Na+ transport. Monensin transports K+ 1/10 as 

well as Na+ and also interacts with protons (48). Valinomycin is a 

cyclodepsipeptide which acts specifically as a potassium cationophore. 

However, because valinomycin is a neutral compound, valinomycin-K+ complexes 

are charged, and potassium diffusion across the cell membrane would be 

expected to be limited by the Nernst potential for potassium (48). 

Figures 4 and 5 show that both monensin and valinomycin inhibit 

LH-stimulated cAMP and progesterone accumulation in significant, 

dose-dependent manners. In the experiment displayed in Figure 4, cells were 

treated with monensin for 30 min. before the addition of LH (200 ng/ml). The 
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maximal inhibition of cAMP and progesterone accumulation by monensin was 

greater than 60% at a 1 pM concentration of the drug. The experiment with 

valinomycin was performed similarly except that LH concentration was 50 

ng/ml. Maximum inhibition by valinomycin was 60% at 10 nM. The IC 50 for 

monensin was about 0.1 yM: for valinomycin, the IC 50 was less than 10 nM. 

Like ouabain, neither drug had a consistent effect on unstimulateo cAMP or 

progesterone (Figure 6 for monensin, data for valinomycin not shown). Figure 

6 shows dose-response curves for monensin inhibition in the presence of 

increasing doses of LH. As with ouabain, inhibition by monensin was not 

reversed by increased LH concentration. Monensin inhibition of LH-stimulated 

cAMP accumulation was more evident at lower doses of LH (34.5% inhibition with 

0.1 yM monensin seen at 50 ng/ml of LH) than at higher doses of LH (21% 

inhibition seen at 0.1 yM monensin at 200 ng/ml of LH). Inhibition by 

monensin was competitive in nature with a of about 0.06 yM. The 

estimated for monensin-inhibition of LH-stimulated progesterone secretion 

was about 0.02-0.04 yM. These values were obtained from plots of reciprocal 

response against drug concentration as explained above for ouabain. 

Neither monensin (0.2 yM) nor valinomycin (2 nM) significantly affected 

cell viability as judged by trypan blue exclusion or LDH release (data not 

shown). When tested for reversibi1ity of drug effect in a protocol identical 

to that described above for ouabain, inhibition of cAMP and progesterone 

accumulation by monensin (0.2yM) was almost completely reversed (Table 1). 

Washing the cells reduced monensin inhibition from 68.4 + 6.3% to 2 + 0.3% for 

cAMP and from essentially 100% inhibition of stimulated progesterone levels to 

super-control levels. Inhibition of cAMP accumulation by valinomycin (2 nM) 
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was surprisingly enhanced by the washing procedure; washed samples were 

inhibitied 53.8 + 3.8% whereas retreated samples were inhibited by only 18.1 + 

1.5%. Washing did, however, substantially reduce valinomycin inhibition of 

progesterone accumulation from 83 + 26% to 20 + 0.9%. All differences were 

significant (p <0.05). 

The effect of a 20 min. preincubation with monensin (0.2 uM) or 

125 
valinomycin (4 nM) on the binding and uptake of [ I]-hCG by luteal cells 

was also tested. Neither drug significantly altered the binding of labeled 

hormone or competition for binding of radiolabeled hormone by unlabeled 

hormone (data not shown). Table 3 shows the result of an experiment in which 

the ability of monensin to inhioit the activity of adenylate cyclase in luteal 

membrane preparations was tested. Like ouabain, monensin (1 uM) did not 

inhibit basal or LH-stimulated levels of cAMP in this assay system. 

Valinomycin was not tested in membrane preparations. 

Neither monensin nor valinomycin appeared to exert their influence on 

LH-stimulation by increasing the activity of phosphodiesterase. After a 10 

min. pre incubation with IBNlX (100 uM), cells were treated with monensin (0.2 

uM) or valinomycin (2 nM) for 20 min. before incubation with LH (100 ng/ml) 

for 90 min. Both drugs markedly inhibited LH-stimulated cAMP accumulation in 

the presence of IBMX: inhibition by monensin was 44 + 3.4% and inhibition by 

valinomycin was 28 + 0.8%. 

The ability of these drugs to inhibit progesterone accumulation in 

response to (Buj^cAMP was also tested. Cells were preincubated with 

monensin (0.2 uM) or valinomycin (2 nM) for 20 min. before the addition of 

(Bu)^cAMP. Monensin significantly inhibited progesterone accumulation in 
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response to (Bu)^oAMP (Figure 7). Progesterone accumulation in response to 

1000 uM (Bu)^"cAMP was inhibited 79.1 + 27.5%. Unlike ouabain and monensin, 

valinomycin had no significant effect on stimulation by the nucleotide. 

In an attempt to evaluate the mechanism of inhibition by the three drugs, 

it was deemed important to ascertain whether inhibition was dependent on an 

effect on transmembrane ion gradients. Thus, if inhibition by ouabain was 

dependent on blockade of the Na+, K+-ATPase and a subsequent increase in 

intracellular sodium, the effect of the drug would be expected to depend on 

the presence of extracellular sodium. A similar argument can be made for 

monensin. Valinomycin, whose actions are thought to arise from its capacity 

to transport K+ only, should not depend on extracellular sodium for its 

inhibitory effects. To test the sodium dependence of these drugs, media was 

prepared in which sodium was replaced isotonically with choline chloride. The 

composition of amino acids and vitamins were identical to MEM. Figure 8 

illustrates the influence of replacing sodium with choline on inhibition by 

the three drugs of LH-stimulated cAMP accumulation. In this figure, the cAMP 

response is plotted as % of cAMP levels in cells treated with LH alone (100 

ng/ml). Inhibition by ouabai n (100 yM) and monensin (0.2y M) were 24 + 0.4% 

and 92.7 + 7.3%, respectively, in sodium replete media. The inhibition by 

these drugs was completely reversed when sodium was replaced by choline. The 

absence of sodium had a much smaller effect on the inhibition by valinomycin 

(2 nM); cAMP accumulation was inhibited 62 + 3% in the presence of sodium and 

42 + 2% in its absence. This difference was significant (p < 0.02) . 

The preceeding experiments demonstrated that three drugs which interfere 

with maintainance of normal transmembrane ionic gradients significantly 
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inhibited the response of the luteal cell to LH. The drugs appeared to be 

without effect in membranes preparations and did not affect binding and uptake 

of hormone by cells. Both ouabain and monensin have as predominant 

pharmacologic mechanisms the ability to increase intracellular sodium 

concentrations, although the routes by which the drugs increase sodium levels 

differ. Like PG (28,29), both drugs inhibited the response to LH at the 

level of cyclic AMP accumulation. The next set of experiments was undertaken 

to further localize the molecular site at which ouabain and monensin inhibit 

cAMP accumulation. 

Binding of cholera toxin to mammalian cell membranes causes 

ADP-ribosylation of the N subunit of adenylate cyclase. This irreversibly 

activates the subunit which in turn activates the catalytic moiety. Cholera 

toxin thereby bypasses the hormone receptor (13). Inhibition of cholera 

toxin-stimulated cAMP accumulation must therefore occur at the N or C 

subunits. The ability of ouabain and monensin to inhibit cholera 

toxin-stimulated cAMP was tested. Figure 9 shows the effect of ouabain 

(100 yM) and monensin (0.2 yM) on cAMP accumulation in luteal cells stimulated 

by cholera toxin. Cells were incubated with cholera toxin for 2 h. Ouabain 

had no significant effect on cholera toxin-stimulated cAMP production. 

Monensin, on the other hand, significantly reduced cAMP accumulation at all 

doses of cholera toxin tested. Maximal cAMP levels were lowered from 2.4 _+ 

5 5 
0.3 pmol/10 cells in the absence of drug to 1.1 + 0.2 pmol/10 cells with 

0.2 yM monensin. The ED 50 for cholera toxin-stimulation was not changed by 

monensin treatment. 
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Further localization of the inhibition was provided by experiments with 

forskolin. This diterpine has been found to stimulate adenylate cyclase in 

all mammalian cells tested, although stimulation of luteal cell cyclase has 

not been reported (55). Stimulation by forskolin is thought to result from 

direct activation of the catalytic subunit of adenylate cyclase, bypassing the 

hormone receptor and N subunit (56). The ability of forskolin to stimulate 

luteal cell cAMP accumulation is shown in Figure 10. Like other mammalian 

cells, luteal cells respond to forskolin with increased cAMP accumulation. 

Maximal stimulation was 5-fold in response to 100yM forskolin. It is unclear 

from the dose-response curve whether higher doses of forskolin would further 

increase cAMP accumulation; doses were limited by the solubility of the drug 

in ethanol and the need to maintain final ethanol concentration at 1%. The ED 

50 for forskolin was about 20 PM. Interestingly, forskolin stimulation of 

cAMP was associated with only a slight increase in progesterone secretion. As 

seen in figure 11, 100 yM forskolin increased cAMP levels from 0.24 + 0.26 to 

5 
3.9 + 0.2 pmol/10 cells, but increased progesterone only from 4.0 + 0.4 to 

5 
5.3 + 0.2 ng/10 cells (p< 0.05) . In contrast, doses of LH which increase 

cAMP only slightly, maximally stimulate progesterone production (11,36). 

Luteal cells were treated with ouabain or monensiri for 20 min. before the 

addition of forskolin. Incubation was allowed to proceed for 1 h. The 

ability of PG F^ to inhibit forskolin stimulation was also tested. In this 

case, PG was added directly before forskolin. PG (210 nM) had no 

significant effect on forskolin stimulation (Figure 12a): ouabain (100yM) was 

also without significant inhibitory effect (Figure 12b). However, monensin 

(0.2 y M) significantly inhibited forskolin-induced cAMP accumulation; maximum 
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cAMP levels were reduced from 3.7 + 0.5 to 1.5 + 0.3 pmol/10 cells by 

monensin but the ED 50 for forskolin did not appear to be affected by drug 

treatment. 

PG F0 exerts its antigonadotropic action whether added before, 

simultaneous with, or after LH (27,57). We tested whether the order of 

addition of drug and hormone was an important factor in expression of the 

inhibitory activities of ouabain and monensin. Cells were treated with 

ouabain (100 pM) or monensin (0.2 pM) at various times before or after the 

addition of LH (200 ng/ml in the case of ouabain, 50 ng/ml for monensin). 

Control tubes received media at identical time points and the cells were 

incubated with LH for 90 min (Table 4). If ouabain was added 15 min. before 

LH, 48% inhibition of cAMP accumultion was seen. However, when added 15 min. 

after LH, ouabain caused only a 12% inhibition. Later addition of the drug 

was not effective. Monensin, when added 15 min. before LH, caused 45 + 21.4% 

inhibition; inhibition was only 18.5 + 3.2% when added simultaneously with LH, 

and 19.6 + 5.3% when added 15 min. after the hormone. Thus, unlike 

prostaglandin, inhibition of cAMP accumulation by ouabain was only effective 

when the drug was added before or simultaneous with LH. The drug was 

ineffective when added after the hormone. Monensin inhibition was diminished, 

but not eliminated when added after LH. 

It is possible that activation of adenylate cyclase by LH depends on an 

acute ionic influx or depolarization; inhibition by ouabain and monensin could 

possibly be explained by prior depletion of the sodium gradient by these 

drugs. If this were the case, pretreatment of cells with LH would render them 

refractory to the effects of ouabain and monensin. This possibility was 
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explored in two ways. First, the dependence of LH-stimulation on the presence 

of extracellular sodium was tested. If stimulation of adenylate cyclase by LH 

required influx of sodium, removal of extracellular sodium should inhibit cAMP 

accumulation in response to the hormone. Luteal cells were incubated in media 

in which sodium was replaced isotonically with choline chloride as described 

in Methods. LH (100 ng/ml) was added, and the cells were incubated for 90 

min. As seen in Figure 13, reduction of sodium from 128 to 32 meq/1 had no 

significant effect on LH-stimulation of cAMP accumulation. When sodium was 

completely eliminated from the medium, maximum cAMP accumulation was reduced 

by 30 + 1%. The ED 50 for LH was not affected by sodium concentration. 

We also examined the sodium channel blocker tetrodotoxin (TTX) to test for 

a requirement of sodium influx in response to LH. If LH binding opened a 

sodium channel and induced sodium influx which may be necessary for maximal 

activation of adenylate cyclase, tetrodotoxin would then be expected to 

inhibit the response to LH. Cells were incubated with TTX for 30 min. at 

which time LH (100 ng/ml) was added, and the cells incubated for an additional 

90 min. Doses of TTX as high as 1 uM had no significant effect on basal or 

LH-stimulated cAMP levels (data not shown). 

Ouabain depolarizes the cell because the Na+, K+-ATPase, an 

electrogenic pump, is inhibited resulting in depletion of sodium and potassium 

gradients. Monensin, by virtue of its action as a sodium ionophore would also 

be expected to have a cell-depolarizing effect. To ascertain whether 

depolarization per se inhibited LH-stimulation of cAMP accumulation, luteal 

cells were incubated in medium in which various concentrations of NaCI were 

replaced isotonically with KC1. Cells were incubated for 90 min. after the 
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addition of LH. The results are shown in Figure 14. No significant 

inhibition was seen with KC1 concentrations as high as 66 mM. 

Thus, it appears that inhibition of LH-activation of luteal cells by 

ouabain and monensin is dependent on the presence of extracellular sodium, but 

the inhibitory effects appear not to be mediated by changes in membrane 

potential. Pharmacologic actions of ouabain in the heart and other tissues 

such as thyroid have been ascribed to an increase in intracellular calcium 

levels produced as a consequence of the drug-induced increase in intracel1u1ar 

sodium. The increase in sodium increases sodium-calcium exchange and it may 

also inhibit calcium extrusion (58). We therefore tested the dependence of 

inhibition by the two drugs on the presence of extracellular calcium. Cells 

were incubated in "Ca++-free" medium (medium 1) to which various levels of 

calcium were added. Ouabain (100 yM) or monensin (0.2 yM), were added to the 

cells for 20 min. before the addition of LH (100 ng/ml), and incubation 

continued for 90 min. 

As seen in Table 5, depletion of extracellular calcium reduced the amount 

of cAMP produced by luteal cells in response to LH. In the absence of added 

calcium, 3.7 + 0.4 pmol accumulated, as compared to a maximum of 14.4 + 2.6 at 

a calcium concentration of 1.5 meq/1. The effects of higher calcium 

concentrations were not tested. Inclusion of 100 yM EGTA in the incubation 

media yielded values which were not different from 0 Ca++ (data not shown). 

Unstimulated levels of cAMP accumulation also increased with calcium 

concentration, rising from 0.96 + 0.3 pmol at 0 Ca++ to 4.0 + 2.0 at 1.5 

meq/1. In the absence of calcium, neither ouabain nor monensin inhibited cAMP 

accumulation, however both drugs elicited significant inhibition when calcium 
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was replaced. At 1.5meq/l, ouabain inhibition was 90.4+ 0.7%. Inhibition 

by monensin was not significant at 0.5 meq/1 Ca +, but was below 

unstimulated levels at 1.5 meq/1. In preliminary experiments, the effect of 

calcium depletion on valinomycin inhibition was tested. Valinomycin (4 nM) 

did not inhibit LH-stimulated cAMP accumulation in the absence of calcium, but 

was maximally inhibitory (80%) at 0.5 meq/1 Ca++ (data not shown). 

Because inhibition by ouabain resembled the antigonadotropic effect of 

PG F0 , it was of interest to determine whether inhibition by ouabain or 
2a 

monensin was additive with prostaglandin. Cells were treated with ouabain 

(50-100 yM) or monensin (0.1-0.2 yM) for 20 min. at which time various doses 

of PG F0 were added and LH (100 ng/ml) added immediately thereafter (90 

min.). The results are shown in Figure 15. In the absence of other drug 

treatment, PG F0 inhibited the LH-stimulated accumulation of cAMP with an 

ID 50 of 21 nM. At 210 nM, cAMP accumulation was reduced to unstimulated 

levels. Addition of a submaximal concentration of ouabain (50^M) shifted the 

dose-response curve for PG F^ to the left, causing maximal inhibition at a 

concentration of prostaglandin of 2.1 nM. Similarly, the presence of monensin 

potentiated the inhibition produced by PG F^, with maximal inhibition at 

2.1 nM PG F0 (0.1 yM monensin) . PG F_ also changed the dose-response 

characteristies of ouabain and monensin; in the presence of 2.1 nM PG F^, 

maximal inhibition by ouabain was seen at 50 vi M rather than 100 yM. This dose 

of prostaglandin also augmented the inhibition by a submaximal dose of 

monensin (0.1 yM), increasing inhibition from 5.3 + 4.4 to 100%. Combinations 

of maximal doses of prostaglandin and ouabain or monensin proved to be less 

inhibitory than either agent alone. At 210 nM PG F^a and 100 yM ouabain. 
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inhibition was 43.6 + 4.6%; inhibition with this concentration of 

prostaglandin and 0.2 yM monensin was 77.2 + 4.8%. 

The augmentation of inhibition by ouabain and monensin with PG F0 

raised the question of whether inhibition by prostaglandin shared a common 

pharmacologic mechanism with ouabain or monensin. In particular, it was 

possible that PG exerted its anti gonadotropic effect by increasing 

intracellular sodium, either by opening specific sodium channels or by 

inhibition of the Na+, K+-ATPase. To test this, cells were incubated in 

media in which sodium was replaced isotonically with choline chloride. LH 

(100 ng/ml) was added followed directly by various concentrations of PG F^ 

and the incubation continued for 90 min. As seen in Figure 16, the 

dose-response characteristics of PG F^ were not significantly affected by 

reduction of sodium levels to as low as 10 meq/1. In sodium-replete medium, 

210 nM prostaglandin inhibited LH-stimulated cAMP accumulation to 33 + 8.3% of 

control values; in low sodium medium, cAMP was reduced to 24.6 + 6.3% of 

control values. 
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DISCUSSION 

The present studies provide evidence that the response of the rat luteal 

cell to luteinizing hormone is extremely sensitive to changes in transmembrane 

ionic gradients. Three drugs which would be expected to perturb the normal 

gradients produce significant, dose-dependent inhibition of LH-stimulated cAMP 

and progesterone accumulation. The drugs possess different pharmacologic 

properties and would therefore be expected to influence the physiology of the 

cell in different ways. Ouabain, a cardiac glycoside, inhibits the activity 

of the Na , K -ATPase (54); sodium would be expected to diffuse into and 

potassium out of the cell according to their electrochemical gradients in 

absence of pump activity. Thus, both gradients would be substantially 

depleted, and the membrane potential decreased (54). 

Monensin, a polyether carboxylic acid, is an ionophore with high 

specificity for sodium ions. Th ionophore also possesses some affinity for 

+ + 
potassium, transporting K about 10% as well as Na ; monensin is also 

capable of transporting protons (48). Thus, the net result of treatment with 

monensin would be to allow sodium into the cell in exchange for potassium and 

protons. The resultant equilibrium levels of ionic concentrations and 

membrane potential would be dependent on the relative rates of ionophorous 

transport and pump activity of the Na+, K+-ATPase. Monensin has been 

shown to increase Na uptake in neuroblastoma-glioma hybrid cells (59). 

Valinomycin, on the other hand, is a neutral ionophore specific for K+; as 

such, valinomycin would be expected to allow potassium to diffuse out of the 

cell. Since the valinomycin-K+ complex is charged, the extent of potassium 

diffusion is limited by the Nernst potential for K+, and valinomycin 

treatment should hyperpolarize the cell membrane (48). 
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Each of the three drugs inhibited LH-stimulated cAMP and progesterone 

accumulation in a significant, dose-dependent fashion. The ID 50 for each 

drug was consistent with or lower than doses used to effect changes in other 

systems. These doses were 50 yM for ouabain, less than 1 yM for monensin, and 

less than 1 nM for valinomycin. Maximum inhibition was greater than 50% for 

each drug. None of the drugs had a consistent effect on unstimulated levels 

of cAMP or progesterone, although occasional slight stimulation or inhibition 

was seen. The lack of effect of drug treatment on trypan blue exclusion or 

LDH release indicates that the inhibition was not due to decreased cell 

viability. 

The studies on the reversibility of the effect of these three drugs 

yielded somewhat inconclusive results. Washing decreased ouabain inhibition 

of cAMP accumulation from 67 to 37% although progesterone inhibition was 

reduced from 75 to 17%. The dissociation of the rat ouabain-ATPase complex is 

slow, with a t-j^ 5 min. in the absence of physiological ion 

concentrations; with the addition of monovalent cations, the tis 

increased 5-fold (60). The relatively brief washings used in this study (5 

min.) were most likely insufficient to allow complete dissociation of the 

ouabain-ATPase complex. The effect of monensin, on the other hand, was more 

readily reversible. Inhibition of cAMP was reduced from 68 to 2%, and 

progesterone inhibition was quantitatively reversed by the washing procedure. 

Washing paradoxically increased the inhibitory potency of valinomycin with 

regard to cAMP accumulation. Although this drug's lipophilic nature might 

make simple washing inadequate to remove the drug from cell membranes, the 

inhibition of progesterone accumulation did decrease from 83 to 20% by 
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washing. Thus, the increase in inhibitory potency for cAMP raises the 

questions of whether valinomycin treatment allows some essential component or 

cofactor of the adenylate cyclase system to leave the cell upon washing and 

centrifugation. Recent studies have shown that under certain circumstances, 

cAMP production in luteal cells is limited by the availability of purines for 

ATP synthesis (40). However, treatment with adenosine does not reverse 

valinomycin inhibition making this an unlikely explanation (Gore and Behrman, 

unpublished observations). 

It was somewhat surprising that these drugs displayed similar 

dose-response curves for inhibition of cAMP and progesterone accumulation. 

There is a dissociation in dose-response character!’sties of LH-stimulation of 

cAMP and progesterone secretion in luteal cells so that progesterone is 

maximally stimulated at doses of LH which produce very small increments in 

cAMP (11,36). Thus, a 50% inhibition of cAMP accumulation would not be 

expected to be associated with a 50% inhibition of progesterone secretion as 

seen with these three drugs. The experiments in which (Bu)^cAMP was used to 

stimulate progesterone secretion revealed that ouabain and monensin inhibit 

progesterone secretion at a step distal to cAMP production in addition to 

their effects on cAMP accumulation. The reason for parallel inhibition by 

valinomycin remains unexplained since valinomycin did not significantly affect 

progesterone production stimulated by exogenous cyclic nucleotide. It is 

possible that valinomycin treatment specifically inhibits adenylate cyclase 

moities which may be directly linked to steroidogenesis. That steroidogenic 

and nonsteroidogenic cyclases might exist is suggested by the fact that 

forskolin stimulates luteal cAMP accumulation while having little effect on 

progesterone accumulation (Figure 11). 
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Because of the variety of changes in cell physiology which might result 

from manipulation of ionic gradients, it is impossible to assign a priori 

pharmacologic mechanisms responsible for the antigonadotropic effect of the 

drugs. Replacement of the sodium in the medium by choline demonstrated that 

the inhibition produced by ouabain and monensin was absolutely dependent on 

the presence of extracellular sodium (Figure 8). This indicates that in the 

case of ouabain, inhibition is not due merely to blockade of the ATPase, but 

rather to the resultant ionic changes, in particular, the influx of sodium 

according to its electrochemical gradient. Similarly, the sodium dependence 

of monensin inhibition is consistent with the drug's high selectivity for 

sodium over other cations (48) and again indicates that increasing 

intracel1ular levels of sodium antagonizes the effect of LH. This may be a 

direct effect of the sodium, or may be a consequence of some other change in 

cellular physiology triggered by the increase in sodium concentration. The 

potassium ionophore, as expected, did not depend on extracellular sodium for 

its inhibitory action, although the inhibition by valinomycin was decreased to 

a small extent by sodium depletion. The mechanisms by which increased 

intracellular sodium might antagonize LH-stimulation are discussed below. 

Binding and uptake of hormone by intact cells was not affected by drug 

treatment. Binding studies with intact cells would appear more appropriate 

than membrane binding studies as the ability of these drugs to produce changes 

in ionic gradients depends upon the maintainance of membrane integrity with 

preservation of sidedness. Moreover, in preliminary studies, no inhibition of 

binding of [ I]-hCG to luteal membranes was seen in the presence of drug 

treatment (data not shown). Neither ouabain nor monensin inhibited basal or 
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LH-stimulated cAMP production in membrane preparations; hence, these drugs do 

not interact directly with the adenylate cyclase complex. However, one cannot 

conclude that in intact cells, the changes in ionic composition do not affect 

the N subunit or catalytic moiety of adenylate cyclase directly. Increasing 

the activity of cyclic nucleotide phosphodiesterase was considered not to be a 

major action of these drugs as inhibition of this enzyme by IBMX did not 

reverse the effect of drug treatment on cAMP accumulation. 

The loci of inhibition of cAMP accumulation by ouabain and monensin were 

defined more precisely by stimulating cells with cholera toxin and forskolin. 

Ouabain had no significant effect on cAMP accumulation in response to cholera 

toxin. Monensin, however, did reduce maximal cAMP levels by greater than 50% 

but had no effect on the ED 50 for cholera toxin-stimulation. As noted above, 

cholera toxin activates adenylate cyclase through covalent modification of N 

(13). Because cholera toxin-stimulated cAMP accumulation is not affected by 

ouabain, ouabain inhibition is most likely exerted at a step proximal to 

activation of N. Moreover, because ouabain has no effect on LH binding and 

uptake, it would appear that the glycoside inhibits functional coupling of the 

occupied hormone-receptor complex to adenylate cyclase. In this regard, 

ouabain inhibition resembles the action of PG F^a which decreases 

LH-stimulated cAMP production but has little effect on cholera 

toxin-stimulated cAMP levels (30). The ability of monensin to inhibit cholera 

toxin-stimulated cAMP accumulation indicates that the inhibition by this drug 

may be elicited at N or a site distal to activation of N. The possibility 

that monensin inhibits the binding of the toxin or subsequent modification of 

N by the toxin cannot be excluded by the present experiments. Inhibition of 
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cholera toxin-stimulated cAMP production does not preclude an additional 

influence of monensin at the level of receptor-N interaction. 

The diterpene forskolin activates adenylate cyclase in all mammalian cell 

types tested. Forskolin enhances ligand-stimulated cylcase activity and also 

markedly activates cyclase in the absence of ligand (55). Because forskolin 

elevates cAMP levels in the eye mutant S49 lymphoma cells which lack a 

functional N subunit, the drug is presumed to directly stimulate the catalytic 

subunit of adenylate cyclase (56). It is not surprising that forskolin 

stimulates cAMP accumulation in isolated luteal cells (Figure 10). Forskolin 

stimulated cAMP accumulation 5-fold. Although the maximum stimulation and ED 

50 cannot be precisely determined from the current data, the dose range at 

which forskolin was effective (10-100 yM) is consistent with its use in other 

systems (55). 

Ouabain had no effect on forskolin-stimulated cAMP accumulation (Figure 

12A). This finding is consistent with the lack of effect of the glycoside on 

cholera toxin-stimulated cAMP accumulation. On the other hand, monensin 

inhibited forskolin-stimulated cAMP accumulation by 50% (Figure 12B). 

Monensin treatment would therefore appear to inhibit cAMP accumulation by 

changes in the sodium gradient which directly influence the catalytic moiety 

of adenylate cyclase. This finding is consistent with inhibition of cholera 

toxin-stimulated cAMP accumulation; however, it does not preclude additional 

effects of monensin treatment at points proximal to the catalytic subunit. 

Although both ouabain and monensin require extracellular sodium and calcium to 

express thier inhibitory activities, the experiments with cholera toxin and 

forskolin illustrate that a difference in the inhibitory activity of the two 
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drugs exists. This discrepancy may reflect differences in the extent to which 

the two drugs increase intracellular Na+ or Ca++ levels and the 

dose-response characteristics of the cations themselves. 

The effect of PG F,. on forskol in-stimulated cAMP levels was also 
2a 

tested. Like ouabain, PG had no effect on the binding and uptake of 

hCG, and had little or no effect on cholera toxin-stimulated cAMP accumulation 

(28,30). PG F^ also did not inhibit forskolin stimulation of cAMP 

accumulation (Figure 12B), lending further support to the conclusion that 

PG F^a appears to functionally uncouple the LH-receptor complex from 

adenylate cylase (61,71). 

The inability of forskolin to substantially increase progesterone 

production at doses which lead to cAMP levels otherwise associated with 

maximal progesterone secretion (Figure 11) raises important questions about 

the functional relationship between cAMP levels and steroidogenesis in the 

luteal cell. Like forskolin, cholera toxin stimulates luteal steroidogenesis 

only slightly while markedly elevating cAMP to levels which, if induced by LH, 

would maximally stimulate progesterone production (30). Similar results have 

been seen with stimulation of rat leydig cells by cholera toxin (62). As 

discussed in the introduction, in luteal, adrenal cortical and other cells, 

the dose of trophic hormone required to produce half-maximal end response (in 

this case, progesterone accumulation) is considerably less than that which 

elicits the half-maximal cAMP response (11,12,36). Long attributed to "spare 

receptors", the additional cAMP made at high hormone concentrations may serve 

other cellular functions (12). The failure of forskolin and cholera toxin to 

stimulate progesterone secretion raises the further question of whether 
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different classes of adenylate cyclases exist such that the cAMP produced in 

response to LH gains priveleged access to the steroidogenic processes. 

Non-sepcific stimulation of many different cyclase complexes by cholera toxin 

or forskolin would lead to high levels of cAMP but only some of this would be 

directed to protein kinases which stimulate steroid production. Abramowitz 

and Birnbaumer have concluded that there is only one class of adenylate 

cyclase in the luteal membrane because the stimulatory effects of LH and 

3-adrenergic agents are not additive (14). These studies were carried out in 

membrane preparations and therefore cAMP production could not be correlated 

with steroidogenesis; it is possible that tissue homogenization and membrane 

isolation so disrupts the cellular architecture that in situ functional 

differences among cyclase molecules cannot be discerned. Further elucidation 

of the relationship between cAMP and steroidogenesis awaits new methodology 

which can resolve differences among intracellular pools of cAMP and 

demonstrate the presence or absence of selective stimulation and inhibition of 

these pools. 

There are several routes by which an increase in intracellular sodium 

could lead to antagonism of LH-stimulation. Inhibition could be mediated 

directly by an action of sodium on the adenylate cyclase enzyme complex. 

Sodium ions reduce receptor binding affinities for cholecystokinin in brain 

and pancreas (63) and a-adrenergic, muscarinic, and opiate agonists in brain 

(64,65,66). However, ouabain and monensin had no effect on hCG binding and 

uptake in luteal cells. Sodium ions also promote hormonal inhibition of 

adenylate cyclase in various tissues including myocardium and 

neuroblastoma-glioma cells (67). It has been proposed that there is an 
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inhibitory N subunit which is linked to adenylate cyclase; the ability of 

increased intracellular sodium to antagonize LH-stimulated cAMP production 

could be mediated through activation of such a protein (67). Birnbaumer et al 

have reported that luteal adenylate cyclase activity in membranes is inhibited 

by sodium but only at doses at which non-specific effects of ionic strength 

are seen (10). However, it is possible that if "sided" membrane vesicle 

preparations were made, an increase in [Na+]^n might prove to specifically 

inhibit LH-stimulated cAMP production. 

LH-stimulated cAMP levels were markedly reduced when ouabain or monensin 

were added simultaneous with or preceeding LH (Table 4). In the case of 

ouabain, addition of the drug before or together with LH led to 48% 

inhibition, whereas addition 15 min. following the hormone led to only 12% 

inhibition. The binding of ouabain to the Na+, K+-ATPase is slow, with a 

t-j of 10 min. (68). Additionally, some time must be required for the 

subsequent passive depletion of sodium and potassium gradients. Thus, when 

ouabain is added after LH, considerable amounts of cAMP might accumulate 

before ouabain takes effect. Alternatively, LH pretreatment may render the 

cell resistant to inhibition by ouabain. Monensin inhibition of cAMP 

accumulation was also considerably diminished when the drug was added after 

LH. Monensin action requires diffusion of the drug into the membrane, after 

which the ionophore acts as a pore, allowing sodium to diffuse into the cell. 

Thus, monensin may not require as long a latent period for activity as 

ouabain. It seems likely that LH pretreatment has a protective effect against 

monensin inhibition. In contrast, PG F0 effectively antagonizes LH action 

even when added 60 min. after LH (57). In this respect, ouabain and monensin 
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inhibition differ from that of prostaglandin. The binding of hCG to LH 

receptors is essentially irreversible at 37°C (69). It is tempting to 

postulate that coupling of occupied LH receptors to cyclase is also not easily 

reversed, a phenomenon which may diminish ouabain and monensin action after LH 

addition. It is currently thought that hydrolysis of GTP by the N subunit 

inactivates ligand-stimulated adenylate cyclase while decreasing the affinity 

of the receptor for ligand (70). However, GTP does not change the affinity of 

the LH receptor for gonadotropin as it does for ligand receptors in other 

cyclase systems (71,72,73); LH-stimulated adenylte cyclase may be inactivated 

by other means, such as internalization of the hormone-receptor complex. 

Increasing intracellular sodium levels depolarizes the cell membrane. It 

is conceivable that a negative membrane potential is needed for effective 

stimulation of adenylate cyclase by LH. For example, if maximal stimulation 

by LH required an acute influx of sodium or calcium through receptor-mediated 

channels, chronic depolarization might inactivate such channels. This seems 

unlikely as Higuchi and colleagues showed through direct intracellular 

recording of luteal cell membrane potential that LH did not change membrane 

potential (46). In these studies, depolarization by high concentrations of 

potassium actually increased progesterone secretion; cAMP was not measured. 

Recently, however, adrenocortical cells have been demonstrated to undergo 

depolarization in response to ACTH; this depolarization appears to be due 

primarily to calcium influx (74). 

If an acute ionic flux or depolarization were required for full activation 

of adenylate cyclase by LH, this might explain the diminished effect of 

ouabain and monensin following LH addition as these drugs induce chronic 
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depolarization. However, substantial reduction of the sodium gradient by 

decreasing extracellular sodium to 32 meq/1 had no effect on LH stimulation 

(Figure 13). The sodium channel blocker tetrodotoxin also had no effect on 

LH-stimulation. This does not exclude a role for sodium influx in 

LH-stimulation as TTX appears to block potential-dependent sodium gates; 

receptor-mediated sodium permeability changes such as in post-synaptic 

membranes are not blocked by TTX (75,76). However, depolarization of luteal 

cells by high extracellular potassium concentrations had no effect on 

LH-stimulated cAMP accumulation (Figure 14). Since sodium channels would be 

expected to be inactivated by chronic depolarization, a role of acute ion flux 

in LH-stimulation is unlikely. The present results also show that 

depolarization does not increase luteal cAMP accumulation (Figure 14). As 

depolarization appears to increase luteal steroidogenesis (46), this may 

indicate that there are additional factors regulating luteal steroidogenesis 

which mediate depolarization-induced progesterone accumulation. There is 

ample evidence in the adrenal cortex that calcium is required for steroid 

biosynthesis; both depolarization and ACTH stimulate calcium influx (12). 

Increasing intracellular sodium often leads to a secondary increase in 

intracellular calcium (77). There is considerable debate as to whether this 

results from an increase in sodium-calcium antiport, inhibition by 

intracellular sodium of calcium extrusion, or a decrease in intracellular 

calcium sequestration; it is likely that in various cell types and under 

different conditions each mechanism may play a role (58). It is generally 

agreed that the inotropic action of ouabain results from a secondary increase 

in intracellular calcium (54). Calcium ions could be responsible for 
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inhibiting LH-stimulated cAMP production. Dorflinger and Behrman reported 

that two hour incubations of luteal cells with the calcium ioriophore A23187 

antagonized the effects of LH; this inhibition required the presence of 

extracellular calcium (31). Ouabain decreases thyrotropin-stimulated cAMP 

accumulation in canine thyroid slices; this effect was partially reversed by 

*f + 

Mn ions, but was not dependent on the presence of extracellular calcium 

(78). The authors suggested that the inhibition was mediated by decreased 

sequestration of intracellular calcium or release of calcium from organelles 

in response to the increased intracellular sodium. 

Current experiments in which the concentration of extracellular calcium 

was varied point to a complicated role for this cation in luteal physiology 

(Table 5). LH stimulates cAMP production in the absence of extracellular 

calcium; replacing calcium increases both stimulated and basal cAMP levels. 

Maximum cAMP levels in response to LH were seen at 1.5 mM calcium. 

Extracellular calcium thus appears to enhance LH-stimulation of cAMP but it 

does not appear to be obligatory. It is not clear from the present study 

whether this effect of calcium is strictly extracellular, for instance by 

enhancing binding of hormone, or whether LH-stimulation actually depends on a 

calcium influx. Extracellular calcium has similar effects on cAMP production 

in adrenal cells stimulated by ACTH (79,80) and C-6 glioma cells stimulated by 

norepinephrine (81). However, as noted, A23187 treatment inhibits LH 

stimulated cAMP levels (31). It is possible that low levels of cytoplasmic 

calcium enhance LH-stimulated cAMP production while higher concentrations 

inhibit cyclase directly. Such biphasic modulation of adenylate cyclase 

activity by calcium has been demonstrated in brain tissue. A 
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calmodulin-sensitive adenylate cyclase has been shown to be stimulated by 

micromolar calcium concentrations and inhibited by higher concentrations of 

calcium (82). Calcium is not required to elicit LH-stimulation of adenylate 

cyclase activity in luteal membranes (10). However, luteal membranes have 

required superphysiological doses of LH to generate cAMP, and the absence of 

calcium may contribute to this (10) . Millimolar concentrations of calcium 

inhibit LH-stimulated cyclase activity in membranes (31). It is possible that 

under appropriate circumstances, for instance with the addition of calcium and 

calmodulin, a direct role of calcium in physiological concentraions on 

LH-sensitive adenylate cyclase will be demonstrated in membrane preparations. 

Aside from inhibiting adenylate cyclase directly or via calmodulin, increased 

cytoplasmic calcium could stimulate phospholipase A^ or C, producing 

prostaglandins or phosphatidyl inositol metabolites which could mediate the 

inhibition of adenylate cyclase. A similar mechanism could explain A23187 

inhibition. 

Because replacing extracel1ular calcium enhances LH-stimulated cAMP 

accumulation, the role calcium plays in mediating ouabain and monensin 

inhibition remains ambiguous. In the absence of extracel1ular calcium neither 

drug affects LH-stimulated cAMP production; replacement of calcium allows the 

inhibitory activity of the drugs to be expressed (Table 5). There are two 

possible interpretations for these results. One is that LH-stimulation of 

cAMP has two components, one calcium-dependent and one calcium-independent. 

If ouabain and monensin inhibit the calcium-dependent component, the 

inhibition by the drugs would not be observed in the absence of calcium. It 

is also possible and perhaps more likely that the increase in intracellular 
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sodium provided by ouabain and monensin treatment leads to an influx of 

extracellular calcium and this leads directly or indirectly to inhibition of 

LH-stimulated cAMP production. This would be consistent with the effects of 

A23187. The inhibition of LH-stimulation seen by complete removal of sodium 

from the medium (Figure 13) could also be explained by a rise in intracellular 

calcium mediated by sodium-calcium exchange induced by a reversal of the 

sodium gradient (77). 

PG F^a does n°t require extracellular calcium for its antigonadotropic 

activity (57). The effects of low doses of PG F^a and ouabain or monensin 

are superadditive, although combinations of high doses of prostaglandin with 

either drug are less inhibitory than either treatment alone (Figure 15). This 

additivity at low doses may indicate that ouabain and monensin share a common 

mechanism of inhibition with PG F^a. However, PG F^a was equally potent 

in the presence and absence of extracellular sodium (Figure 16). It is thus 

highly unlikely that PG F^a increases intracellular sodium as a primary 

mechanism of inhibition. PG F^a may, however, release calcium from 

intracellular stores. If inhibition by ouabain and monensin are mediated by 

calcium, additivity would be predicted. It is also possible that some or all 

of the inhibition produced by ouabain and monensin is due to synthesis of 

prostaglandin. There are differences between the inhibitory activities; 

PG F2Ct is active whether added before or after LH (57), whereas ouabain and 

monensin are less active when added after LH. Monensin appears to lead to 

inhibition of the catalytic subunit of adenylate cyclase, while PG F0 and 
c a 

ouabain appear to uncouple the hormone-receptor complex from N. If ouabain 

and monensin activity were due exclusively to synthesis of prostaglandin, one 

would expect activity but not superadditivity with low doses of PG F^ . 
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Ouabain treatment in different cell types affects cyclic nucleotide levels 

in various ways. As noted above, in thyroid tissue, ouabain decreases 

TSH-stimulated cAMP accumulation (78). In cultured fetal rat bones, ouabain 

increased basal and PTH-stimulated cAMP levels (83) but had no effect on PG 

F0 -stimulated cAMP accumulation in cultured bone cells (84). Ouabain also 
l a 

increases cAMP levels and insulin secretion in isolated pancreatic islet cells 

(85) . Monensin stimulates catecholamine secretion in adrenal chromaffin cells 

(86) and in pheochromocytoma cells (87) and increases spontaneous and evoked 

transmitter release in the frog neuromuscular junction (88). In both adrenal 

and pheochromocytoma cells, the effect of monensin required extracellular 

sodium but not calcium. There have been few reports of the effects of 

monensin on cAMP levels. In sea urchin spermatozoa, high concentrations of 

the ionophore (25 vM) stimulate cAMP accumulation in a sodium-dependent 

fashion (89). 

The mechanism of the antigonadotropic effect of valinomycin is not 

obvious. Valinomycin treatment should result in hperpolarization of the 

membrane as noted above; this would increase the electrochemical gradient for 

both sodium and calcium. Valinomycin inhibition is only slightly dependent on 

extracellular sodium (Figure 8). Preliminary experiments indicate that 

inhibition by valinomycin is, however, dependent on the presence of 

extracellular calcium (data not shown). This lends support to the possibility 

that a primary step in inhibition of LH-stimulated cAMP accumulation by all 

three drugs in an increase in intracel1ular calcium. 

It seems likely that increased intracellular calcium, produced by a 

variety of pharmacologic manipulations, inhibits the response of the luteal 
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cell to LH in agreement with earlier findings using the calcium ionophore 

A23187 (31). Direct confirmation of this hypothesis will require the use of 

labeled calcium to study calcium flux in response to drug treatment. 

Inhibition by calcium might be mediated directly at the adenylate cyclase 

complex as suggested by preliminary studies which showed inhibition of 

LH-stimulated cAMP in membrane preparations by millimolar levels of calcium 

(31). Alternatively, calcium influx could lead to the activation of 

phospholipases whose reaction products-prostaglandins, leukotrienes or 

phosphatidyl inositol metabolites-antagonize LH action. Additionally the 

effects of calcium may be related to changes in membrane fluidity, consistent 

with the x-ray diffraction experiments of Carlson and colleagues (42,43,44). 

Precise explication of the role of calcium in LH-activation and inhibition 

of LH-activation will require experiments with membrane preparations testing 

the effects of calcium, calmodulin, calmodulin inhibitors or antibodies, on 

LH-stimulated cAMP production. As LH-stimulation is blunted in the absence of 

extracellular calcium, it seems likely that under appropriate experimental 

conditions, LH-sensitive adenylate cyclase will be stimulated at low calcium 

concentrations, but will be inhibited by higher concentrations, similar to 

some cyclase systems in brain (82). Additional experiments with inhibitors of 

phospholipases and cyclo- and lipo- oxygenase would help determine whether 

production of fatty acid-derived mediators is an important consequence of 

calcium influx in the luteal cell. 

The luteal cell is unique as it becomes desensitized to LH spontaneously 

during its brief lifetime. The ability of three ion-active drugs to 

profoundly inhibit the response of luteal cells to luteinizing hormone 
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indicates that maintainance of the usual ionic gradients is critically 

important to luteal steroidogenesis. Indeed, the competitive actions of these 

drugs and natural substances such as PG and GnRH against LH may indicate 

that one of the luteotropic actions of LH may be to maintain optimum 

electrochemical ionic gradients in the luteal cell and to preserve low 

intracellular levels of calcium. This conclusion is supported by results of 

the present studies which showed that ouabain and monensin were inactive in 

cells pretreated for about 30 min. with LH. Consequently, LH may rescue the 

corpus luteum from regression by preventing an increase in intracellular 

calcium which may be the initial event in the luteolytic process. Detaiiled 

investigation into the effects of calcium on the luteal adenylate cyclase 

complex may yield important information about luteolysis, receptor-cyclase 

coupling and modulation of cellular response to extracellular messengers. 
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Table 1. Reversibility of inhibition of LH-stimulated cAMP and progesterone 
accumulation by ouabain, monensin and valinomycin. 

cAMP Progesterone 

Treatment Drug Treated Drug Treated 
and Washed 

Drug Treated Drug Treated 
and Washed 

% Inhibition % Inhibition 

Ouabain 
(100 p M) 

67.3 + 7.1 36.8 + 3.7a 75.7 + 2.7 17.8 + 2.8a 

Monensin 
(0.2yM) 

68.4 + 6.3 2.2 + 0.3a 100 -25.7 + 2.9ab 

Valinomycin 
(2 nM) 

18.1 + 1.5 53.3 + 3.8a 82.8 + 23.8 20.2 + 0.8a 

Cells were incubated with drugs at the indicated concentrations for 15 min, the 
media was aspirated following centrifugation (100 g; 5 min), fresh media with and 
without drugs was added, the cells were resuspended and incubated for an additional 
5 min. The washing procedure was then repeated. The cells were resuspended in 
fresh media with and without drugs and incubated for 5 min, following which LH 
(100 ng/ml) was added and the incubation continued for an additional 90 min. 

Values are the mean + SEM of four replicates, expressed as percent inhibition of 
control LH stimulated. aSignificantly different from washed and retreated 
(p <0.05). bWashed values greater than control 
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Table 2. Effect of ouabain on adenylate cyclase activity in luteal membranes. 

cAMP (pmo1/mg/min) 

[LH] (ng/mlj Control Ouabain 
(100uM) 

0 8.1 + 1.3 6.8 + 0.5 

50 11.0 + 1.1 14.2 + 1.3 

100 21.3 + 4.0 21.0 + 4.0 

Values are the mean + SEM of four replicates. 
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Table 3. Effect of monensin on adenylate cyclase activity in luteal membranes. 

cAMP (pmo1/mg/min) 

[LH] (ng/ml) Control Monensin 
(1 uM) 

0 1.0 + 0.6 1.5 + 1.3 

50 10.2 + 1.6 6.8 + 1.7a 

100 13.7 + 1.0 13.7 + 1.2 

Values are the mean + SEM of four replicates, difference not significant 
(p > 0.05). 
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Table 4. Effect of time of addition of ouabain or monensin on inhibition of 
LH-stimulated cAMP accumulation. 

Time of addition 
of drug 

(mi n) 

Inhibition of cAMP Accumulation (%) 
Ouabain Monensin 
(100UM) (0-2U M) 

-60 

-30 

-15 

0 (LH added) 

15 

30 

60 

*37.9 + 2.4 

*48.0 + 0.1 

*48.7 + 2.7 

*12.0 + 3.1 

1.4 + 5.0 

5.5 + 4.7 

*49.7 + 3.8 

*45.0 + 2.4 

*18.5 + 3.2 

*19.6 + 5.3 

*11.4 + 1.7 

-26.7 + 1.9a 

Values are the mean + SEM of four replicates expressed as percent inhibition 
of LH-stimulated levels (LH = 200 ng/ml for ouabain and 50 ng/ml in monensin 
experiment). *p < .05 compared to LH control. At the indicated times drug or 
media alone was added. aValue greater than LH control. All incubations 
with LH in the presence of drugs were of 90 min. duration. 
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Table 5. Effect of calcium depletion on LH-stimulation of cAMP accumulation 
and on inhibition of LH-stimulation by ouabain and monensin in luteal 
cel Is. 

Treatment 
CaCl2 (mM) 

0 0.5 1.5 

Contro 1 1.0 + 0.3 1.0 + 1.6 4.0 + 1.0 

LH (100 ng/ml) 3.7 + 0.4 6.7 + 0.9 14.4 + 2.6 

LH + Ouabai n (100 pM) 3.8 + 1.0 4.0 + 0.3* * 6.1 + 1.1* 

LH + Monensin (0.2 p M ) 5.0 + 1.1 8.4 + 0.3 2.6 + 0.3* 

Cells were dispersed and enriched in Ca^+ -free media (see Materials and 
Methods) and incubated in the same media to which the indicated concentrations 
of CaCl2 was added. Cells (10^) were preincubated with ouabain or 
monensin for 20 min prior to addition of LH; drugs and LH were coincubated 
with the cells for 90 min. Each value is the mean + SEM of 4 replicates. 
*p < .01 compared to LH treatment alone. 
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FIGURE 1. Dose-response effect of ouabain on LH stimulated cAMP and 
progesterone accumulation in luteal cells. Cells (10^) were incubated with 
ouabain for 1 h, at which time LH was added (200 ng/ml). Incubation was 
continued for 90 min. Each point is the mean + SEM for four replicates. cAMP 
accumulation in the absence of LH was 0.2 pmol/105 cells. Progesterone 
accumulation in the absence of LH was 21.3 + 1.0 ng/10^ cells. 
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FIGURE 2. Effect of LH concentration on inhibition of cAMP and 
progesterone accumulation by ouabain in luteal cells. Cells (105) were 
incubated with ouabain for 1 h, at which time LH was added. Incubation was 
continued for 90 min. Each point is the mean + SEM of four replicates. A. 
cAMP accumulation. B. Progesterone accumulation. 
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FIGURE 3. Effect of ouabain on stimulation of progesterone accumulation 

UBU2rC/MP,i" luteal CellS‘ CeUs (105> “ere incubated with ouabain 
(100 uM) for 30 min. before the addition of (Bu)2-cAMP. Incubation was 
continued for 90 min. Each point represents the mean + SEM of four 
replicates. - 
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FIGURE 4. Dose-response effect of monensin on LH-stimulated cAMP and 
progesterone accumulation in luteal cells. Cells (10^) were incubated with 
monensin for 30 min. before the addition of LH (200 ng/ml). Incubation was 
continued for 90 min. Each point represents the mean + SEM of four 
replicates. cAMP accumulation in the absence of LH was 0.1 pmol/10^ cells. 
Progesterone accumulation in the absence of LH was 3.7 + 0.6 ng/10^ cells. 
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FIGURE 5. Dose response effect of valinomycin on LH-stimulated cAMP and 
progesterone accumulation in luteal cells. Cells (10^) were incubated with 
valinomycin for 30 min. before the addition of LH (50 ng/ml). Incubation was 
continued for 90 min. Each point represents the mean + SEM of four 
replicates. cAMP accumulation in the absence of LH was 0.2 pmol/lO^ cells. 
Progesterone accumulation in the absence of LH was 15.6 + 0.4 ng/10^ cells. 
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FIGURE 6. Effect of LH concentration on inhibition of cAMP and 
progesterone accumulation in luteal cells by monensin. Cells (10^) were 
incubated with monensin for 30 min. before the addition of LH. Incubation was 
continued for 90 min. Each point is the mean + SEM of four replicates. 
A. cAMP accumulation. B. Progesterone accumulation. 
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FIGURE 7. Effects of monensin and valinomycin on stimulation of 
progesterone accumulation by (Bu)2-cAMP in luteal cells. Cells (105) were 
incubated with monensin (0.2 uM) or valinomycin (2 nM) for 30 min. before the 
addition of (Bu)2-cAMP. Incubation was continued for 90 min. Each point 
represents the mean + SEM of four replicates. 
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FIGURE 8. Effect of sodium depletion on inhibition of LH-stimulated cAMP 
accumulation by ion-active drugs in luteal cells. Cells were washed twice in 
sodium-replete medium or in medium in which sodium was replaced isotonically 
with choline chloride, as described in Methods. Cells (105) were incubated 
with ouabain (100yM), monensin (0.2yM) or valinomycin (2 nM) for 30 min. 
before the addition of LH (100 ng/ml) . Each value represents the mean + SEM 
for four replicates. cAMP accumulation in the absence and presence of LH was 
0.07 + 0.03 and 7.1 + 0.3 pmol/10J cells, respectively, in sodium-replete 
medium, and 0.07 + 0.04 and 4.2 + 0.2 pmol/10b cells, respectively, in 
sodium-aepleted medium. *significantly different from control (p< 0.05). 
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EFFECT OF OUABAIN AND MONENSIN ON 
CHOLERA TOXIN STIMULATION OF 

cAMP ACCUMULATION IN LUTEAL CELLS 

CHOLERA TOXIN (nM) 

FIGURE 9. Effect of ouabain and monensin on cholera toxin-stimulated cAMP 
levels in luteal cells. Cells (10^) were incubated with ouabain (100 y M) or 
monensin (0.2 pM) for 20 min. before the addition of cholera toxin. 
Incubation proceeded for 2 h. Each point represents the mean + SEM of four 
replicates. 
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FIGURE 10. Dose-response effect of forskolin on cAMP accumulation in 
luteal cells. Cells (105) were incubated with forskolin for 1 h. Each 
point represents the mean +_ SEM for four replicates. 
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FIGURE 12. Effect of ouabain, monensin, and PG F2 on forskolin- 
stimulation of cAMP accumulation in luteal cells. Cells (10^) were 
incubated with ouabain (100 pM) or monensin (0.2 pM) for 20 min. before the 
addition of forskolin. PG F2a (210 nM) was added simultaneously with 
forskolin. Incubation proceeded for 60 min. Each value represents the mean + 
SEM of four replicates. — 
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FIGURE 13. Effect of Na+ concentration on LH-stimulated cAMP 
accumulation in luteal cells. Cells were washed twice with sodium-replete 
medium or with medium in which Na+ was replaced isotonically with choline 
chloride (see Materials and Methods). Cells (105) were then resuspended in 
medium which contained the indicated concentrations of Na+ and incubated 
with LH (100 ng/ml) for 90 min. Each point represents the mean + SEM of 4 
replicates. 
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EFFECT OF EXTRACELLULAR POTASSIUM ON 
LH-ST1MULATED cAMP ACCUMULATION 

LH (ng/ml) 

FIGURE 14. Effect of depolarization by high extracellular potassium on 

in'mPriT ated levels in lutea1 cells* Cells were washed and resuspended 
rhine^Um 1!1uwhlch sodlum chloride was replaced isotonically with potassium 
chloride. LH was added and cells were incubated for 90 min. Each 
represents the mean _+ SEM for four replicates. 

point 
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FIGURE 15. Combined effects of ouabain or monensin with PG F2a on 
LH-stimulated cAMP accumulation in luteal cells. Cells (105) were incubated 
with ouabain (50-100yM) or monensin (0.1-0.2 yM) for 20 min. at which time 
PG F2a was added. LH (100 ng/ml) was added directly thereafter and 
incubation proceeded for 90 min. Each point represents the mean + SEM of fou 
replicates. A. Ouabain. B. Monensin. 
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FIGURE 16. Effect of sodium depletion on inhibition by PG F?„ of 
LH-stimulated cAMP accumulation in luteal cells. Cells were washed and 
resuspended in sodium-replete medium or in medium in which sodium was replaced 
isotonically by choline chloride as described in Methods. PG F?„ was added 
to cells (10b), and LH (100 ng/rnl) was added directly thereafter. 
Incubation proceeded for 90 min. Each point represents the mean + SEM for 
four replicates. - 
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